Nikotínamidadeníndinukleotidfosfát
Nikotínamidadeníndinukleotidfosfát alebo NADP+ je kofaktor, ktorý sa vyskytuje v anabolických reakciách, ako napríklad Calvinovom cykle alebo syntéze lipidov či nukleových kyselín, ktoré využívajú NADPH ako redukčné činidlo. Využívajú ho všetky formy bunkového života.[1] NADPH je redukovaná forma NADP+. NADP+ sa líši od NAD+ tým, že NADP+ má naviac fosfátovú skupinu na 2' pozícii ribózy. Táto fosfátová skupina je pridávaná NAD+ kinázou a odstraňovaná NADP+ fosfatázou.[2]
Vlastnosti![]() NADP+ je schopný prijať dva elektróny a protón, čím sa mení na redukovanú formu, NADPH. NADP+ vystupuje v reakciách ako oxidačné činidlo, NADPH potom ako redukčné činidlo. FluorescenciaPodobne ako NADH, i NADPH vykazuje fluorescenciu. NADPH sa vo vodných roztokoch excituje pri nikotínamidovom absorpčnom maxime (asi 335 nm, pri UV) a má fluorescenčné emisné maximum, ktoré má píky pri 445-460 nm (fialová až modrý). NADP+ nevykazuje žiadnu výraznú fluorescenciu.[3] StabilitaNADH a NADPH sú veľmi stabilné v zásaditých roztokoch, ale NAD+ a NADP+ sa v zásaditých roztokoch rozkladajú na fluorescentný produkt, ktorá je možné využíť na kvantifikáciu. Naopak sú NAD+ a NADP+ celkom stabilné v kyslých roztokoch, ale kyslé roztoky rozkladajú NADH a NADPH.[4] BiosyntézaNADP+Všeobecne sa najprv syntetizuje NADP+, ktorý sa potom premieňa na NADPH. Reakcie syntézy zvyčajne začínajú z NAD+, ktorý sa syntetizuje de novo alebo recyklačnými reakciami, na ktorý potom NAD+ kináza pridáva fosfátovú skupinu. ADP-ribozylcykláza umožňuje syntézu z nikotínamidu v obnovovacej dráhe a NADP+ fosfatáza premieňa NADPH naspäť na NADH, aby sa udržala rovnováha.[1] Niektoré formy NAD+ kinázy, hlavne tá prítomná v mitochondriách, premieňa aj NADH naspäť na NADPH (katalyzuje teda reakciu oboma smermi).[5][6] Prokaryotická dráha je menej objasnená, ale obsahuje všetky podobné enzýmy, takže tento proces by mal prebiehať podobne.[1] NADPHNADPH vzniká z NADP+. Hlavným zdrojom NADPH u zvierat a iných nefotosyntetických organizmov je pentózafosfátová dráha, kde ho produkuje glukóza-6-fosfátdehydrogenáza (G6PDH) v prvom kroku tejto dráhy. Pentózafosfátová dráha z glukózy tvorí aj pentózy, ktoré sú takisto dôležitou súčasťou NAD(P)H. Niektoré baktérie využívajú G6PDH v Entner–Doudoroffovej dráhe, ale tvorba NADPH je rovnaká.[1] Ferredoxín-NADP+ reduktáza (FNR), ktorá je prítomná vo všetkých doménach života, je hlavných zdrojom NADPH u fotosyntetických organizmov, vrátane rastlín a siníc. Nachádza sa v poslednom kroku elektrón transportného reťazca v svetelnej fáze fotosyntézy. Využíva sa ako redukčná sila pre biosyntetické dráhy v Calvinovom cykle na asimiláciu oxidu uhličitého a pomáha premeniť ho na glukózu. FNR prijíma elektróny aj v iných nefotosyntetických dráhach: je vyžadovaná pre redukciu dusičnanu na amoniak u rastlinnej asimilácie v dusíkovom cykle a v tvorbe olejov.[1] Existuje i ďalšie menej známe mechanizmy, ktorými sa tvorí NADPH, ktoré u eukaryotov všetky závisia na prítomnosti mitochondrií. Hlavnými enzýmami v týchto procesoch, ktoré súvisia s metabolizmom uhlíka, sú izoformy malátdehydrogenázy, izocitrátdehydrogenázy (IDH) a glutamátdehydrogenázy spojené s NADP+. V týchto reakciách sa ako oxidačné činidlo využíva NADP+, podobne ako NAD+ v obdobných enzýmoch.[7] Mechanizmus IDH vyzerá byť hlavným zdrojom NADPH v tukových bunkách a možno i bunkách pečene.[8] Tieto procesy sa nachádzajú aj v baktériách. Baktérie sú takisto schopné využiť i NADP-dependentnú glyceraldehydr-3-fosfátdehydrogenázu za tým istým účelom. Podobne ako pentózafosfátová dráha, tieto dráhy sú príbuzné častiam glykolýzy.[1] Ďalšou dráhou, ktorá súvis s metabolizmom uhlíka, ktorá sa účastní tvorby NADPH, je mitochondriálny cyklus folátu, ktorý využíva serín ako zdroj jednouhlíkových jednotiek na udržanie syntézy nukleotidov a redoxnej homeostázy v mitochondriách. Mitochondriálny cyklus folátu bol nedávno navrhnutý ako hlavný zdroj tvorby NADPH v mitochondriách rakovinných buniek.[9] NADPH môže vznikať aj dráhami, ktoré nie sú spojené s metabolizmom uhlíka. Jedným príkladom je ferredoxínreduktáza. Nikotínamidnukleotidtranshydrogenáza presúva vodík medzi NAD(P)H a NAD(P)+ a nachádza sa v eukaryotických mitochondriách a mnohých baktériách. Existujú i verzie, ktorých funkcia je závislá na protónovom gradiente. Niektoré anaeróbne organizmy využívajú hydrogenáza spojené s NADP+ a štiepia hydrid z plynného vodíka, čím tvoria protón a NADPH.[1] FunkciaNADPH poskytuje redukčné ekvivalenty, zvyčajne vodíkové atómy, pre biosyntetické reakcie a redoxné procesy, ktoré sa účastnia ochrany proti toxicite reaktívnych foriem kyslíka (ROS), čím umožňuje regeneráciu glutatiónu (GSH).[10] NADPH sa takisto účastní anabolických dráh, ako je syntéza cholesterolu, syntéza steroidov,[11] syntéza kyseliny askorbovej,[11] syntéza xylitolu,[11] syntéza cytozolových mastných kyselín[11] a mikrozomálneho predlžovania mastných kyselín. Systém NADPH je takisto zodpovedný za tvorbu voľných radikálov pomocou NADPH oxidázy v bunkách imunitného systému. Tieto radikály sa používajú na ničenie patogénov v procese nazývanom respiračné vzplanutie.[12] Je to zdroj redukčných ekvivalentov pre hydroxyláciu aromatických zlúčenín, steroidov, alkoholov a drog katalyzovanú cytochrómom P450. Enzýmy, ktoré využívajú NADP(H)NADP+ sa ako kofaktor účastní minimálne 140 chemických reakcií katalyzovaných enzýmami.[1] NADPH ako koenzýmMedzi enzýmy, ktoré využívajú NADPH ako kofaktor, patrí napríklad:
NADPH ako substrátV rokoch 2018 a 2019 sa objavili prvé články, ktoré popisovali enzýmy, ktoré odstraňujú 2' fosfátovú skupinu NADP(H) u eukaryotov. Ako prvý bol popísaný cytoplazmatický proteín MESH1 (Uniprot Q8N4P3)[15] a potom mitochondriálny proteín nokturnín.[16][17] Čo je zaujímavé, štruktúra a viazanie NADPH u proteínov MESH1 (5VXA) a nokturnínu (6NF0) si nie sú pribuzné. Referencie
ZdrojTento článok je čiastočný alebo úplný preklad článku Nicotinamide adenine dinucleotide phosphate na anglickej Wikipédii. Information related to Nikotínamidadeníndinukleotidfosfát |
Portal di Ensiklopedia Dunia