Morreu no dia 29 de março de 2020, aos 96 anos.[3]
Carreira e pesquisa
De 1949 a 1984, Anderson foi contratado pela Bell Laboratories em Nova Jérsia,onde trabalhou em uma ampla variedade de problemas em física da matéria condensada. Durante esse período, ele desenvolveu o que agora é chamado de localização de Anderson (a ideia de que estados estendidos podem ser localizados pela presença de desordem em um sistema) e o teorema de Anderson (a respeito do espalhamento de impurezas em supercondutores); inventou o Anderson Hamiltoniano, que descreve a interação local dos elétrons em um metal de transição; quebra de simetria proposta dentro da física de partículas (isso desempenhou um papel no desenvolvimento do Modelo Padrão e o desenvolvimento da teoria por trás do mecanismo de Higgs, que por sua vez gera massa em algumas partículas elementares ); criou a abordagem pseudos pin para a teoria BCS de supercondutividade; fez estudos seminais de não emparelhamento de ondas S (quebra de simetria e mecanismo microscópico) na superfluidez de He3 e ajudou a encontrar a área de vidros de spin.[4][5][6][7][8][9][10] Foi eleito membro da Academia de Artes e Ciências dos Estados Unidos em 1963.[11]
De 1967 a 1975, Anderson foi professor de física teórica na Universidade de Cambridge. Em 1977, Anderson recebeu o Prêmio Nobel de Física por suas investigações sobre a estrutura eletrônica de sistemas magnéticos e desordenados, o que permitiu o desenvolvimento de dispositivos eletrônicos de comutação e memória em computadores. Os co-pesquisadores Sir Nevill Francis Mott e John van Vleck dividiram o prêmio com ele. Em 1982, ele foi premiado com a Medalha Nacional de Ciência. Ele se aposentou do Bell Labs em 1984 e foi Joseph Henry Professor Emérito de Física na Universidade de Princeton.[12]
Os escritos de Anderson incluíram Concepts in Solids, Basic Notions of Condensed Matter Physics and The Theory of Superconductivity in the High-Tc Cuprates. Anderson fez parte do conselho consultivo da Scientists and Engineers for America, uma organização voltada para a promoção da ciência sólida no governo americano.[13]
Em resposta à descoberta de supercondutores de alta temperatura na década de 1980, Anderson propôs a teoria da ligação de valência ressonante (RVB) para explicar o fenômeno. Enquanto muitos não acharam a ideia convincente, a teoria RVB provou ser instrumental no estudo de líquidos de spin.[14]
Anderson também fez contribuições conceituais para a filosofia da ciência por meio de sua explicação de fenômenos emergentes, que se tornaram uma inspiração para a ciência de sistemas complexos. Em 1972, ele escreveu um artigo intitulado "Mais é diferente", no qual enfatizava as limitações do reducionismo e a existência de níveis hierárquicos de ciência, cada um dos quais requerendo seus próprios princípios fundamentais para o avanço.[15]
Em 1984, ele participou dos workshops de fundação do Santa Fe Institute, um instituto de pesquisa multidisciplinar dedicado à ciência de sistemas complexos.[16] Anderson também co-presidiu a conferência de economia de 1987 do instituto com Kenneth Arrow e W. Brian Arthur, e participou de seu workshop de 2007 sobre modelos de comportamento emergente em sistemas complexos.[17]
Uma análise estatística de 2006 de artigos de pesquisa científica de José Soler, comparando o número de referências em um artigo ao número de citações, declarou Anderson como o "mais criativo" entre os dez físicos mais citados no mundo.[18]
P.W. Anderson, P. W., Halperin, B. I., Varma, C. M., "Anomalous low-temperature thermal properties of glasses and spin glasses," Philosophical Magazine, 25, 1 (1972).