BRCA2 i BRCA1 se normalno eksprimiraju u ćelijamama dojke i drugog tkiva, gdje pomažu u obnavljanju oštećene DNK ili uništavanju ćelija ako se DNK ne može popraviti. Uključeni su u popravak oštećenja hromosoma, s važnom ulogom u popravakama greašaka u formiranju dvostrukih lanaca.[11][12] Ako je sam BRCA1 ili BRCA2 oštećen BRCA mutacijama, oštećena DNK se ne popravlja ispravno, a to povećava rizik od raka dojke.[13][14]BRCA1 i BRCA2 opisani su kao "geni osjetljivosti na rak dojke" i "proteini osjetljivosti na rak dojke". Prevladavajući alel ima normalnu tumor-supresivnu funkciju, dok visoko penetrirane mutacije u tim genima uzrokuju gubitak tumorske supresivne funkcije, što je u korelaciji s povećanim rizikom od raka dojke.[15]
Gen BRCA2 nalazi se na dugom (q) kraku hromosoma 13, na poziciji 12.3 (13q12.3).[16] Ljudski referentni gen BRCA2 sadrži 27 egzona, a and the cDNK ima 10.254 baznih parova[17] za kodiranje proteina od 3.418 aminokiselina.[18][19]
Karcinom dojke (uključujući i muški): Međuodnosi fenotip – genotip[20][21][22]
Rekombinacijsko popravljanje oštećenja dvostrukog lanca DNK – neki ključni koraci: mutirana ATM (ATM) je protein-kinaza koju regrutira i aktiviraju dvolančani prekidi DNK. Oštećenja dvostruke niti DNK također aktiviraju Fanconijev kompleks jezgarne anemije (FANCA/B/C/E/F/G/L/M).[24] Osnovni kompleks FA monoubikvitinirajući nizvodno cilja na FANCD2 i FANCI.[25] ATM aktivira (fosforilira) CHEK2 i FANCD2[26] CHEK2 fosforilira BRCA1.[27] Sveprisutni su FANCD2 kompleksi sa BRCA1 i RAD51.[28] Protein PALB2 djeluje kao središte,[29] okupljajući BRCA1, BRCA2 i RAD51 na mjestu prekida dvolančane DNK, a također se veže za RAD51C, člana paralognih kompleksa RAD51 RAD51B-RAD51C-RAD51D - XRCC2 (BCDX2). Kompleks BCDX2 odgovoran je za regrutiranje ili stabilizaciju RAD51 na mjestima oštećenja.[30]RAD51 ima glavnu ulogu u homolognorekombinacijskompopravku DNK tokom poprvljanja dvostrukog lanca. U ovom procesu dolazi do izmjene lanca DNK ovisne o ATP-u u kojoj jedan lanac upada u sekvence uparenih homolognih molekula DNK. RAD51 je uključen u traženje homologije i faze uparivanja niti.
Iako se strukture gena BRCA1 i BRCA2 jako razlikuju, barem su neke funkcije međusobno povezane. Proteini koje proizvode oba gena neophodni su za popravak oštećene DNK (vidi sliku koraka rekombinacijske popravke). BRCA2 veže jednolančanu DNK i direktno stupa u interakciju s rekombinazom RAD51 radi stimulacije[31] i održavanja [32] invazija lanaca, što jer vitalni korak homologne rekombinacije. Lokalizacija RAD51 na prekid dvolančane DNK zahtijeva stvaranje kompleksa BRCA1-PALB2-BRCA2. PALB2 (partner i lokalizator BRCA2)[33] može djelovati sinergijski s himerom BRCA2 (zvanom piccolo ili piBRCA2) za daljnje promicanje invazije niti.[34] Ovi prekidi mogu biti uzrokovani prirodnim i medicinskim zračenjem ili drugom izloženošću okoliša, ali se također događaju kada hromosomi razmjenjuju genetički materijal tokom posebnog tipa ćelijske diobe, koja stvara spermu i jajne ćelije (mejoza). Dvolančani prekidi nastaju i tokom popravljanja unakrsnih veza DNK. Popravljajući DNK, ovi proteini imaju ulogu u održavanju stabilnosti ljudskog genoma i sprečavanju opasna preuređenja gena koji mogu dovesti do krvnih i drugih karcinoma.
Pokazalo se da BRCA2 ima ključnu ulogu u zaštiti od MRE11-ovisne nukleolitske degradacije obrnutih viljuški koje nastaju tokom zastoja replikacije DNK (uzrokovano preprekama kao što su mutacije, interkalirajući agensi itd.).[35]
Kao i BRCA1, BRCA2 vjerovatno regulira aktivnost drugih gena i igra ključnu ulogu u razvoju embrija.
Klinički značaj
Određene varijacije gena BRCA2 povećavaju rizik za rak dojke, kao dio nasljednog sindroma raka dojke-jajnika. Istraživanem su identificirane stotine mutacija u genu BRCA2, od kojih mnoge uzrokuju povećan rizik od raka. BRCA2 mutacije obično su insercije ili delecije malog broja baznih parova DNK u genu. Kao rezultat ovih mutacija, proteinski proizvod gena BRCA2 je abnormalan i ne funkcionira pravilno. Vjeruje se da neispravan protein BRCA2 nije u stanju popraviti oštećenje DNK koje se događa u cijelom genomu. Kao rezultat toga, dolazi do povećanja učestalosti mutacija zbog sklonosti greškama u sintezi translezije, u prošlosti neopravljenih oštećenja DNK, a neke od ovih mutacija mogu uzrokovati nekontroliranu podjelu ćelija u obliku tumora.
Ljudi koji imaju dvije mutirane kopije gena BRCA2 imaju jedan tip Fanconijeve anemije. Ovo stanje uzrokovano je izrazito smanjenim nivoom BRCA2 proteina u stanicama, što omogućava nakupljanje oštećene DNK. Pacijenti sa Fanconijevom anemijom skloni su pojavi nekoliko tipova leukemija (tipova raka krvnih ćelija); solidni tumori, posebno glave, vrata, kože i reproduktivnih organa i supresija koštane srži (smanjena proizvodnja krvnih ćelija koja dovodi do anemija). Žene koje su naslijedile neispravan gen BRCA1 ili BRCA2 imaju rizik od raka dojke i jajnika koji je toliko visok i djeluje tako selektivno da se mnogi nositelji mutacija odluče za profilaksnu operaciju. Bilo je mnogo nagađanja za objašnjenje tako očigledno upečatljive specifičnosti tkiva. Glavne odrednice gdje se javljaju nasljedni karcinomi povezani sa BRCA1 i BRCA2 povezani su sa tkivnom specifičnošću patogena raka, uzročnika koji izaziva hroničnu upalu ili karcinogenom. Ciljano tkivo može imati receptore za patogene, postati selektivno izloženo kancerogenima i infektivnom procesu. Urođeni genomski deficit narušava normalne reakcije i pogoršava osjetljivost na bolesti na organu-meti. Ova teorija se također uklapa u podatke za nekoliko tumorskih supresora izvan BRCA1 ili BRCA2. Glavna prednost ovog modela je ta što sugerira da postoje i neke mogućnosti osim profilaksne operacije.[36]
Osim raka dojke kod muškaraca i žena, mutacije u BRCA2 također dovode do povećanog rizika od rakajajnika, jajovoda, prostate i guštrerače. U nekim studijama, mutacije u središnjem dijelu gena bile su povezane s većim rizikom od raka jajnika i manjim rizikom od raka prostate od mutacija u drugim dijelovima gena. Nekoliko drugih tipova raka također je viđeno u određenim porodicama s BRCA2 mutacijama.
Općenito, naslijeđene mutacije gena (uključujući mutacije u BRCA2) čine samo 5-10% slučajeva raka dojke; specifični rizik od dobijanja raka dojke ili drugog karcinoma za svakoga ko ima mutaciju BRCA2 ovisi o mnogim faktorima.[37]
Sve dosad identificirane mutacije BRCA2 zametne linije naslijeđene su, što ukazuje na mogućnost velikog efekta "osnivača" u kojem je određena mutacija zajednička dobro definiranoj populacijskoj skupini i teorijski se može pratiti do zajedničkog pretka. S obzirom na složenost skrininga mutacija za BRCA2, ove uobičajene mutacije mogu pojednostaviti metode potrebne za skrining mutacija u određenim populacijama. Analiza mutacija koje se javljaju s visokom učestalošću također dopušta proučavanje njihove kliničke ekspresije.[38] Upečatljiv primjer osnivačke mutacije nalazi se na Islandu, gdje jedna BRCA2 (999del5) mutacija predstavlja gotovo sve porodice raka dojke/jajnika.[39][40] Ova mutacija pomjeranja okvira dovodi do visoko skraćenog proteinskog proizvoda. U velikoj studiji koja je ispitivala stotine karcinoma i kontrolne osobe, ova mutacija od 999del5 pronađena je u 0,6% opće populacije. Treba napomenuti da, dok je 72% pacijenata za koje je ustanovljeno da su nositelji imalo umjerenu ili jaku porodičnu istoriju raka dojke, 28% je imalo malu ili nikakvu porodičnu historiju bolesti. To snažno sugerira prisutnost modifikajijskih gena koji utiču na fenotipsku ekspresiju ove mutacije, ili možda interakciju BRCA2 mutacije s faktorima okruženja. Dodatni primjeri mutacija osnivača u BRCA2 dati su u donjoj tabeli.
Šablon:Dynamic list
U biljke Arabidopsis thaliana, gubitak BRCA2homologaAtBRCA2 uzrokuje ozbiljne nedostatke i kod muške mejozr i u razvoju ženskih gametocita.[56] Protein AtBRCA2 potreban je za pravilnu lokalizaciju sinaptonemskog kompleksa proteina AtZYP1 i rekombinaza AtRAD51 i AtDMC1. Nadalje, AtBRCA2 je potreban za pravilnu mejotsku sinapsu. Stoga je AtBRCA2 vjerovatno važan za mejotsku rekombinaciju. Čini se da AtBRCA2 djeluje za vrijeme mejoze kako bi kontrolirao korake jednolančane invazije posredovane AtRAD51 i AtDMC1 koji se javljaju tokom mejotske homolognorekombinacijskog popravljanja oštećenja DNK.[56]
Miševi koji proizvode skraćene verzije BRCA2 su održivi, ali su sterilni.[61] :Simboli
.[62] Aspermatogeneza u ovih mutiranih pacova posljedica je neuspjeha homologne hromosomske sinapse tokom mejoze.
Ponavljajuće sekvence BRC
DMC1 (DNK mejotska rekombinaza 1) je mejoza-specifični homologRAD51, koji posreduje razmjenu lanaca tokom homologne rekombinacije u popravku. DMC1 promovira stvaranje proizvoda invazije lanca DNK (molekule zglobova) između homolognih molekula DNK. Ljudski DMC1 direktno stupa u interakciju sa svakim od niza ponavljajućih sekvenci u proteinu BRCA2 (zvanom BRC ponavljanja) koji stimulira stvaranje molekula zglobova pomoću DMC1.[63] BRC-ponavljanja u skladu su s motivom koji se sastoji od sekvence od oko 35 visoko konzerviranih aminokiselina koje su prisutne barem jednom u svim proteinima sličnim BRCA2. BRCA2 BRC ponavljanja stimuliraju stvaranje zglobnih molekula, podstičući interakciju jednolančane DNK (ssDNK) s DMC1.[63] ssDNK kompleksirana s DMC1 može se upariti s homolognom ssDNK iz drugog hromosoma tokom faze sinapsije u mejozi, kako bi se formirala zajednička molekula, središnji korak u homolognoj rekombinaciji. Stoga se čini da BRC ponavljajuće sekvence BRCA2 imaju ključnu ulogu u rekombinacijskom popravljanju oštećenja DNA tokom mejotske rekombinacije.
Sve u svemu, čini se da homologna rekombinacija tokom mejoze funkcionira za popravljanje oštećenja DNK i da BRCA2 ima ključnu ulogu u obavljanju ove funkcije.
Neurogeneza
BRCA2 je potreban miševima za neurogenezu i suzbijanje meduloblastoma.[64] Gubitak BRCA2 duboko utiče na neurogenezu, posebno tokom embrionskog i postnatalnog neuronskog razvoja. Ovi neurološki nedostaci proizlaze iz oštećenja DNK.[64]
Epigenetička kontrola
Epigenetičke promjene u ekspresiji BRCA2 (uzrokujući prekomjernu ili nedovoljnu ekspresiju) vrlo su česte kod sporadičnih karcinoma (vidi donju tabelu), dok se mutacije u BRCA2 rijetko nalaze.[65][66][67]
U karcinomu pluća nemalih ćelija, BRCA2 je epigenetički potisnut hipermetilacijom promotora.[68] U ovom slučaju, hipermetilacija promotora značajno je povezana s niskom ekspresijom iRNK i niskom ekspresijom proteina, ali ne i s gubitkom heterozigotnosti gena.
Kod sporadičnog karcinoma jajnika nađen je suprotan učinak. Promotori BRCA2 i 5'-UTR regije imaju relativno malo ili nimalo metiliranih CpG dinukleotida u DNK tumora, u usporedbi s onom netumorske DNK, a pronađena je i značajna korelacija između hipometilacije i > 3-puta veće ekspresije BRCA2.[69] Ovo ukazuje da hipometilacija BRCA2 promotora i 5'-UTR regija dovodi do prekomjerne ekspresije BRCA2-ine IRNK.
Jedan izvještaj ukazuje na određenu epigenetičku kontrolu ekspresije BRCA2 pomoću mikroRNK s miR-146a i miR-148a.[70]
Ekspresija BRCA2 kod raka
U eukariotima, protein BRCA2 ima važnu ulogu u homolognoj rekombinacijskoj popravci. Kod miševa i ljudi BRCA2 prvenstveno posreduje u urednom sastavljanju RAD51 na jednolančanoj (ss) DNK, obliku koji je aktivan za homologno uparivanje i invaziju lanaca..[71] BRCA2 također preusmjersava r RAD51 iz dvolančane DNK i sprečava disocijaciju od ssDNA.[71] Osim toga, četiri paraloziRAD51, koji se sastoje od RAD51B (RAD51L1), RAD51C (RAD51L2), RAD51D (RAD51L3), XRCC2 čine kompleks koji se naziva kompleks BCDX2 (vidi sliku: Rekombinacijska popravka DNK). Ovaj kompleks sudjeluje u regrutiranju ili stabilizaciji RAD51 na mjestima oštećenja.[30] Čini se da kompleks BCDX2 djeluje olakšavajući sastavljanje ili stabilnost RAD51 nukleoproteinskog filamenta. RAD51 katalizira prijenos niti između prekinute sekvence i njenog neoštećenog homologa, kako bi se omogućila ponovna sinteza oštećene regije (vidi homologni modeli rekombinacije).
Neke studije o raku izvještavaju o prekomjerno izraženom BRCA2, dok druge navode o nedovoljno ieksprimiranje BRCA2. Najmanje dva izvještaja su otkrila prekomjernu ekspresiju u nekim sporadičnim tumorima dojke i nedovoljnu ekspresiju u drugim sporadičnim tumorima dojke.[72][73] (vidi Tabelu).
Mnogi karcinomi imaju epigenetičke nedostatke u različitim genima za obnavljanje DNK . Ovi nedostaci popravka vjerovatno uzrokuju povećana nepopravljena oštećenja DNK. Prekomjerna ekspresija BRCA2 uočena kod mnogih karcinoma može odražavati kompenzacijsku prekomjernu ekspresiju BRCA i povećanu homolognu rekombinacijsku popravku, kako bi se barem djelimično nosilo s takvim viškom oštećenja DNK. Egawa et al.[74] sugeriraju da se povećana ekspresija BRCA2 može objasniti genomskom nestabilnošću, koja se često javlja kod karcinoma, što indukuje ekspresiju BRCA2 iRNK, zbog povećane potrebe za BRCA2 za popravak DNK.
Nedovoljna ekspresija BRCA2 sama bi dovela do povećanih nepopravljenih oštećenja DNK. Pogreške replikacije nakon ovih oštećenja dovele bi do povećanih mutacija i raka.
^Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D (septembar 1994). "Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13". Science. 265 (5181): 2088–90. Bibcode:1994Sci...265.2088W. doi:10.1126/science.8091231. PMID8091231.
^Castillo P, Bogliolo M, Surralles J (2011). "Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage". DNA Repair (Amst.). 10 (5): 518–25. doi:10.1016/j.dnarep.2011.02.007. PMID21466974.
^ abThorlacius S, Olafsdottir G, Tryggvadottir L, Neuhausen S, Jonasson JG, Tavtigian SV, Tulinius H, Ogmundsdottir HM, Eyfjörd JE (1996). "A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes". Nature Genetics. 13 (1): 117–119. doi:10.1038/ng0596-117. PMID8673089. S2CID8443452.
^Neuhausen S, Gilewski T, Norton L, Tran T, McGuire P, Swensen J, Hampel H, Borgen P, Brown K, Skolnick M, Shattuck-Eidens D, Jhanwar S, Goldgar D, Offit K (1996). "Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer". Nature Genetics. 13 (1): 126–128. doi:10.1038/ng0596-126. PMID8673092. S2CID11909356.
^Verhoog LC, van den Ouweland AM, Berns E, van Veghel-Plandsoen MM, van Staveren IL, Wagner A, Bartels CC, Tilanus-Linthorst MM, Devilee P, Seynaeve C, Halley DJ, Niermeijer MF, Klijn JG, Meijers-Heijboer H (2001). "Large regional differences in the frequency of distinct BRCA1/BRCA2 mutations in 517 Dutch breast and/or ovarian cancer families". European Journal of Cancer. 37 (16): 2082–2090. doi:10.1016/S0959-8049(01)00244-1. PMID11597388.
^Pääkkönen K, Sauramo S, Sarantaus L, Vahteristo P, Hartikainen A, Vehmanen P, Ignatius J, Ollikainen V, Kääriäinen H, Vauramo E, Nevanlinna H, Krahe R, Holli K, Kere J (2001). "Involvement of BRCA1 and BRCA2 in breast cancer in a western Finnish sub-population". Genetic Epidemiology. 20 (2): 239–246. doi:10.1002/1098-2272(200102)20:2<239::AID-GEPI6>3.0.CO;2-Y. PMID11180449.
^Tonin PN, Mes-Masson AM, Narod SA, Ghadirian P, Provencher D (1999). "Founder BRCA1 and BRCA2 mutations in French Canadian ovarian cancer cases unselected for family history". Clinical Genetics. 55 (5): 318–324. doi:10.1034/j.1399-0004.1999.550504.x. PMID10422801. S2CID23931343.
^Tonin PN (2006). "The limited spectrum of pathogenic BRCA1 and BRCA2 mutations in the French Canadian breast and breast-ovarian cancer families, a founder population of Quebec, Canada". Bull Cancer. 93 (9): 841–846. PMID16980226.
^Van Der Looij M, Szabo C, Besznyak I, Liszka G, Csokay B, Pulay T, Toth J, Devilee P, King MC, Olah E (2000). "Prevalence of founder BRCA1 and BRCA2 mutations among breast and ovarian cancer patients in Hungary". International Journal of Cancer. 86 (5): 737–740. doi:10.1002/(SICI)1097-0215(20000601)86:5<737::AID-IJC21>3.0.CO;2-1. PMID10797299.
^Osorio A, Robledo M, Martínez B, Cebrián A, San Román JM, Albertos J, Lobo F, Benítez J (1998). "Molecular analysis of the BRCA2 gene in 16 breast/ovarian cancer Spanish families". Clin. Genet. 54 (2): 142–7. doi:10.1111/j.1399-0004.1998.tb03717.x. PMID9761393. S2CID30388365.
^Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, Tybulewicz VL, Ashworth A (1997). "Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation". Nat. Genet. 17 (4): 423–30. doi:10.1038/ng1297-423. PMID9398843. S2CID42462448.
^Teng DH, Bogden R, Mitchell J, Baumgard M, Bell R, Berry S, Davis T, Ha PC, Kehrer R, Jammulapati S, Chen Q, Offit K, Skolnick MH, Tavtigian SV, Jhanwar S, Swedlund B, Wong AK, Kamb A (1996). "Low incidence of BRCA2 mutations in breast carcinoma and other cancers". Nat. Genet. 13 (2): 241–4. doi:10.1038/ng0696-241. PMID8640236. S2CID9831745.
^Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y (1996). "Mutation analysis in the BRCA2 gene in primary breast cancers". Nat. Genet. 13 (2): 245–7. doi:10.1038/ng0696-245. PMID8640237. S2CID3203046.
^Lancaster JM, Wooster R, Mangion J, Phelan CM, Cochran C, Gumbs C, Seal S, Barfoot R, Collins N, Bignell G, Patel S, Hamoudi R, Larsson C, Wiseman RW, Berchuck A, Iglehart JD, Marks JR, Ashworth A, Stratton MR, Futreal PA (1996). "BRCA2 mutations in primary breast and ovarian cancers". Nat. Genet. 13 (2): 238–40. doi:10.1038/ng0696-238. PMID8640235. S2CID26808443.
^Thike AA, Tan PH, Ikeda M, Iqbal J (2016). "Increased ID4 expression, accompanied by mutant p53 accumulation and loss of BRCA1/2 proteins in triple-negative breast cancer, adversely affects survival". Histopathology. 68 (5): 702–12. doi:10.1111/his.12801. PMID26259780. S2CID3566545.
Zou JP, Hirose Y, Siddique H, Rao VN, Reddy ES (1999). "Structure and expression of variant BRCA2a lacking the transactivation domain". Oncology Reports. 6 (2): 437–40. doi:10.3892/or.6.2.437. PMID10023017.