In mathematics, the Suita conjecture is a conjecture related to the theory of the Riemann surface, the boundary behavior of conformal maps, the theory of Bergman kernel, and the theory of the L2 extension. The conjecture states the following:
Suita (1972): Let R be an Riemann surface, which admits a nontrivial Green function . Let be a local coordinate on a neighborhood of satisfying . Let be the Bergman kernel for holomorphic (1, 0) forms on R. We define , and . Let be the logarithmic capacity which is locally defined by on R. Then, the inequality holds on the every open Riemann surface R, and also, with equality, then or, R is conformally equivalent to the unit disc less a (possible) closed set of inner capacity zero.[1]
Błocki, Zbigniew; Zwonek, Włodzimierz (2020). "Generalizations of the Higher Dimensional Suita Conjecture and Its Relation with a Problem of Wiegerinck". The Journal of Geometric Analysis. 30 (2): 1259–1270. arXiv:1811.02977. doi:10.1007/s12220-019-00343-8. S2CID119622596.
Ohsawa, Takeo (2017). "On the extension of holomorphic functions VIII — a remark on a theorem of Guan and Zhou". International Journal of Mathematics. 28 (9). doi:10.1142/S0129167X17400055.