Ga-68-Trivehexin

Ga-68-Trivehexin
Identifiers
  • [4,7-bis[[[3-[3-[4-[3-[4-[(3S,6S,9S,12S,18S,21S,24S,27R)-18-(3-carbamimidamidopropyl)-12-(carboxymethyl)-3,21-bis[(4-hydroxyphenyl)methyl]-6,25-dimethyl-9-(2-methylpropyl)-2,5,8,11,14,17,20,23,26-nonaoxo-1,4,7,10,13,16,19,22,25-nonazabicyclo[25.3.0]triacontan-24-yl]butylamino]-3-oxopropyl]triazol-1-yl]propylamino]-3-oxopropyl]-oxidophosphoryl]methyl]-1,4,7-triazonan-1-yl]methyl-[3-[3-[4-[3-[4-[(3S,6S,9S,12S,18S,21S,24S,27R)-18-(3-carbamimidamidopropyl)-12-(carboxymethyl)-3,21-bis[(4-hydroxyphenyl)methyl]-6,25-dimethyl-9-(2-methylpropyl)-2,5,8,11,14,17,20,23,26-nonaoxo-1,4,7,10,13,16,19,22,25-nonazabicyclo[25.3.0]triacontan-24-yl]butylamino]-3-oxopropyl]triazol-1-yl]propylamino]-3-oxopropyl]phosphinate;gallium-68(3+)
PubChem CID
UNII
Chemical and physical data
FormulaC195H288GaN54O51P3
Molar mass4367.420 g·mol−1
3D model (JSmol)
  • C[C@H]1C(=O)N[C@H](C(=O)N2CCC[C@@H]2C(=O)N([C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@H](C(=O)N[C@H](C(=O)N1)CC(C)C)CC(=O)O)CCCNC(=N)N)CC3=CC=C(C=C3)O)CCCCNC(=O)CCC4=CN(N=N4)CCCNC(=O)CCP(=O)(CN5CCN(CCN(CC5)CP(=O)(CCC(=O)NCCCN6C=C(N=N6)CCC(=O)NCCCC[C@H]7C(=O)N[C@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N8CCC[C@@H]8C(=O)N7C)CC9=CC=C(C=C9)O)C)CC(C)C)CC(=O)O)CCCNC(=N)N)CC1=CC=C(C=C1)O)[O-])CP(=O)(CCC(=O)NCCCN1C=C(N=N1)CCC(=O)NCCCC[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N2CCC[C@@H]2C(=O)N1C)CC1=CC=C(C=C1)O)C)CC(C)C)CC(=O)O)CCCNC(=N)N)CC1=CC=C(C=C1)O)[O-])[O-])C)CC1=CC=C(C=C1)O.[68Ga+3]
  • InChI=InChI=1S/C195H291N54O51P3.Ga/c1-115(2)94-139-175(277)214-118(7)169(271)229-148(100-124-43-58-133(253)59-44-124)187(289)247-82-22-34-154(247)190(292)238(10)151(184(286)226-142(97-121-37-52-130(250)53-38-121)178(280)220-136(28-19-73-208-193(196)197)172(274)211-106-163(262)217-145(103-166(265)266)181(283)223-139)31-13-16-70-202-157(256)64-49-127-109-244(235-232-127)79-25-76-205-160(259)67-91-301(295,296)112-241-85-87-242(113-302(297,298)92-68-161(260)206-77-26-80-245-110-128(233-236-245)50-65-158(257)203-71-17-14-32-152-185(287)227-143(98-122-39-54-131(251)55-40-122)179(281)221-137(29-20-74-209-194(198)199)173(275)212-107-164(263)218-146(104-167(267)268)182(284)224-140(95-116(3)4)176(278)215-119(8)170(272)230-149(101-125-45-60-134(254)61-46-125)188(290)248-83-23-35-155(248)191(293)239(152)11)89-90-243(88-86-241)114-303(299,300)93-69-162(261)207-78-27-81-246-111-129(234-237-246)51-66-159(258)204-72-18-15-33-153-186(288)228-144(99-123-41-56-132(252)57-42-123)180(282)222-138(30-21-75-210-195(200)201)174(276)213-108-165(264)219-147(105-168(269)270)183(285)225-141(96-117(5)6)177(279)216-120(9)171(273)231-150(102-126-47-62-135(255)63-48-126)189(291)249-84-24-36-156(249)192(294)240(153)12;/h37-48,52-63,109-111,115-120,136-156,250-255H,13-36,49-51,64-108,112-114H2,1-12H3,(H,202,256)(H,203,257)(H,204,258)(H,205,259)(H,206,260)(H,207,261)(H,211,274)(H,212,275)(H,213,276)(H,214,277)(H,215,278)(H,216,279)(H,217,262)(H,218,263)(H,219,264)(H,220,280)(H,221,281)(H,222,282)(H,223,283)(H,224,284)(H,225,285)(H,226,286)(H,227,287)(H,228,288)(H,229,271)(H,230,272)(H,231,273)(H,265,266)(H,267,268)(H,269,270)(H,295,296)(H,297,298)(H,299,300)(H4,196,197,208)(H4,198,199,209)(H4,200,201,210);/q;+3/p-3/t118-,119-,120-,136-,137-,138-,139-,140-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152-,153-,154+,155+,156+;/m0./s1/i;1-2
  • Key:XQKHPHFSWXYCLX-SNFBFVMKSA-K

68Ga-Trivehexin[1] is a radiotracer for positron emission tomography (PET), obtained by labeling the peptide conjugate Trivehexin[1] with the positron emitting radionuclide gallium-68 (68Ga). 68Ga-Trivehexin targets (i.e., binds to) the cell surface receptor αvβ6-integrin and accumulates in αvβ6-integrin-abundant tissues after intravenous (i.v.) application. 68Ga-Trivehexin is thus applied for PET imaging of medical conditions associated with elevated αvβ6-integrin expression.

αvβ6-Integrin, the biological target of 68Ga-Trivehexin, is a heterodimeric transmembrane cell adhesion receptor whose primary natural ligand is latency associated peptide (LAP)[2] in its complex with transforming growth factor beta 1 (TGF-β1).[3][4] Binding of αvβ6-integrin to LAP releases[5] and thus, activates[6] TGF-β1. In early-stage cancer, TGF-β1 acts as a tumor suppressor[7] but can turn into a tumor promoter as cancers develop,[8][9][10] and furthermore induces fibrosis,[11][12] particularly of the lung.[13] As the likely most important activator of TGF-β1,[4] αvβ6-integrin is often found overexpressed in tumors[14] and fibrosis,[15] which is why 68Ga-Trivehexin PET imaging is primarily relevant in this medical context.

Chemistry

Trivehexin, the radiolabeling precursor

Like most precursors used for radiolabeling with radioactive metal cations, Trivehexin is composed of a dedicated complex ligand (a so-called chelator) for kinetically inert binding of the 68GaIII ion, and the bioligand(s) for binding to αvβ6-integrin. The chelator comprised in Trivehexin is a triazacycloalkane with 3 phosphinic acid substituents, with the basic structure 1,4,7-triazacyclononane-1,4,7-triphosphinate[16] (frequently abbreviated TRAP).[17][18][19] The αvβ6-integrin binding molecular unit is a cyclic nonapeptide with the amino acid sequence cyclo(YRGDLAYp(NMe)K).[1]

In the Trivehexin molecule, three of these cyclopeptides are attached by covalent bonds to a single TRAP chelator core. Since TRAP possesses three equivalent carboxylic acids for conjugation of other molecular units via amide formation, Trivehexin is a C3-symmetrical molecule with its three peptide bioligands being fully equivalent. The peptides are attached to the chelator core via the terminal amine group of the side chains of N-methyl lysine. Actually, the conjugation is not done by amide bonding directly, but involves prior functionalization of the peptide with a short molecular extension (a linker) bearing a terminal alkyne, and of TRAP with three linkers bearing terminal azides.[19] These components are assembled by means of copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, also known as Huisgen reaction, a Click chemistry reaction), giving rise to the three 1,3-triazole linkages in the 68Ga-Trivehexin structure.[1]

68Ga radiolabeling

68Ga-Trivehexin is a radioactive drug. The radioactive atom, gallium-68 (68Ga), decays with a half-life of approximately 68 min to the stable isotope zinc-68 (68Zn), to 89% by β+ decay whereby a positron with a maximum kinetic energy of 1.9 MeV is emitted (the remaining 11% are EC decays). Due to the short half life, 68Ga-Trivehexin can not be manufactured long before use but the 68Ga has to be introduced into the molecule shortly before application. This process is referred to as radiolabeling, and is done by complexation of the trivalent cation 68GaIII by the TRAP chelator in Trivehexin.

68GaIII is usually obtained from a dedicated mobile radionuclide source, a Gallium-68 generator, in form of a solution in dilute (0.04–0.1 M) hydrochloric acid (frequently and imprecisely referred to as "68Ga chloride solution in HCl" despite it contains no species with a Ga–Cl bond but [68Ga(H2O)6]3+ complex hydrate cations).[20] For radiolabeling, the pH of the 68Ga containing generator eluate has to be raised from its initial value (depending on HCl concentration, pH 1–1.5) to pH 2–3.5 [21] using suitable buffers, such as sodium acetate. Then, Trivehexin (5–10 nmol) is added to the buffered 68Ga-containing solution, and the mixture is briefly heated to 50–100 °C (usually 2–3 min) to finalize the complexation reaction.[1][22]

Use as medical imaging agent

αvβ6-Integrin as molecular target

The abundance of αvβ6-integrin on most adult human cell types and respective tissues is low. It is however overexpressed in the context of several medical conditions, such as cancer[14] or fibrosis,[15] particularly idiopathic pulmonary fibrosis.[23]

In line with the finding that αvβ6-integrin is expressed by epithelial cells,[24] an elevated density of the protein is observed on the cell surfaces of many carcinomas (synonymous to cancers of epithelial origin).[14][25] Hence, 68Ga-Trivehexin can be used for PET imaging of αvβ6-integrin positive cancers (i.e., those whose cells possess a sufficiently high density of αvβ6 on their surface), including but not limited to pancreatic ductal adenocarcinoma,[26] non-small cell lung cancer, squamous cell carcinomas (SCC) of different origin (most notably, oral and esophageal SCC), as well as breast, ovarian, and bladder cancer.

68Ga-Trivehexin has a high binding affinity to αvβ6-integrin (IC50 = 0.047 nM). Its affinity to other RGD-binding integrins is much lower (IC50 for αvβ3, αvβ8, and α5β1 are 2.7, 6.2, and 22 nM, respectively; note that for IC50, higher values mean lower affinity),[1] resulting in a high selectivity for αvβ6-integrin.

Imaging procedure

Since 68Ga is a positron emitter, 68Ga-Trivehexin is applicable for PET imaging. However, PET is rarely used as a standalone imaging technique these days. Most clinics use PET/CT or even PET/MRI systems that acquire morphological and functional images in a single workflow and thus, provide more detailed and useful medical information to the physician.

For clinical PET/CT diagnostics, an activity in the range of 80–150 MBq 68Ga-Trivehexin is injected intravenously (i.v.).[27][28] The tracer then distributes with the blood flow and moves into tissues by diffusion, where it specifically binds to its target αvβ6-integrin, while an excess is excreted via the kidneys and the urine. As a result, 68Ga-Trivehexin and, therefore, the positron-emitting radionuclide 68Ga, is preferably accumulated by αvβ6-integrin abundant tissues (for example, tumor tissue). Next, a PET/CT scanner is used to detect the gamma radiation which is generated by the annihilation of the positrons emitted by 68Ga (not the actual positrons, which do not leave the body but travel only a few millimetres through the tissue). The spatial distribution of the annihilation events is reconstructed from the raw detector data (referred to as listmode data), which eventually delivers a 3-dimensional data set of radioactivity distribution in the body. These data allow the visualization of αvβ6-integrin positive tissues as 2-dimensional tomographic images or 3-dimensional volume rendering. Typically, the PET/CT imaging is performed 45–60 minutes after the i.v. administration of 68Ga-Trivehexin.[28]

PET/CT imaging of cancers

68Ga-Trivehexin has not yet obtained a marketing approval. It is used for clinical imaging of αvβ6-integrin expression in experimental settings. First-in-human application of different αvβ6-integrin radiotracers has demonstrated that 68Ga-Trivehexin performed especially well in detecting pancreatic cancer, showing high uptake in tumor lesions and low background in the gastrointestinal tract (GI tract).[29] 68Ga-Trivehexin has been used for clinical PET/CT imaging in single cases [27][30] and two cohorts (12 and 44 patients, respectively) [31][28] of suspected or known pancreatic ductal adenocarcinoma, as well as in cases of tonsillar carcinoma metastasized to the brain,[30] of bronchial mucoepidermoid carcinoma,[32] of disseminated parathyroid adenoma in the context of the diagnosis of primary hyperparathyroidism (PHPT),[33] of papillary thyroid carcinoma,[22] and of breast cancer.[34] In a cohort of 20 suspected (19 confirmed) head-and-neck squamous cell carcinoma (HNSCC) cases, 68Ga-Trivehexin PET had a higher sensitivity (92.5%), positive predicitive value (PPV, 100%), and accuracy (93%) than the standard 18F-FDG PET, for which sensitivity, PPV, and accuracy were 90%, 93.1%, and 84.3%, respectively.[31]

Safety

Like for other radioactive imaging agents in medicine, the applied amounts of radioactivity are so low that radiation-related adverse effects are very unlikely to occur, and have not been observed in practice. Consistent with the "tracer principle", the amount of pharmacologically active compound injected to a patient in the course of such an examination is extremely low. Adverse events, such as toxicity or allergic reactions, are thus highly improbable. No adverse or clinically detectable pharmacologic effects were observed following intravenous administration of 68Ga-Trivehexin when administered to cancer patients, and there were no significant changes in vital signs, laboratory study results, or electrocardiograms.[28] In a study involving healthy volunteers, researchers again reported no adverse or clinically detectable pharmacologic effects and no significant changes in vital signs.[21]

References

  1. ^ a b c d e f Quigley NG, Steiger K, Hoberueck S, Czech N, Zierke MA, Kossatz S, et al. (March 2022). "PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the "Cancer Integrin" αvβ6 with Ga-68-Trivehexin". European Journal of Nuclear Medicine and Molecular Imaging. 49 (4): 1136–1147. doi:10.1007/s00259-021-05559-x. PMC 8460406. PMID 34559266.
  2. ^ Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, et al. (June 2011). "Latent TGF-β structure and activation". Nature. 474 (7351): 343–349. doi:10.1038/nature10152. PMC 4717672. PMID 21677751.
  3. ^ Moses HL, Roberts AB, Derynck R (July 2016). "The Discovery and Early Days of TGF-β: A Historical Perspective". Cold Spring Harbor Perspectives in Biology. 8 (7): a021865. doi:10.1101/cshperspect.a021865. PMC 4930926. PMID 27328871.
  4. ^ a b Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, et al. (March 2024). "TGF-β signaling in health, disease, and therapeutics". Signal Transduction and Targeted Therapy. 9 (1): 61. doi:10.1038/s41392-024-01764-w. PMC 10958066. PMID 38514615.
  5. ^ Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, et al. (February 2017). "Force interacts with macromolecular structure in activation of TGF-β". Nature. 542 (7639): 55–59. Bibcode:2017Natur.542...55D. doi:10.1038/nature21035. PMC 5586147. PMID 28117447.
  6. ^ Worthington JJ, Klementowicz JE, Travis MA (January 2011). "TGFβ: a sleeping giant awoken by integrins". Trends in Biochemical Sciences. 36 (1): 47–54. doi:10.1016/j.tibs.2010.08.002. PMID 20870411.
  7. ^ Tang B, Böttinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, et al. (July 1998). "Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency". Nature Medicine. 4 (7): 802–807. doi:10.1038/nm0798-802. PMID 9662371.
  8. ^ Inman GJ (February 2011). "Switching TGFβ from a tumor suppressor to a tumor promoter". Current Opinion in Genetics & Development. 21 (1): 93–99. doi:10.1016/j.gde.2010.12.004. PMID 21251810.
  9. ^ Roberts AB, Wakefield LM (July 2003). "The two faces of transforming growth factor beta in carcinogenesis". Proceedings of the National Academy of Sciences of the United States of America. 100 (15): 8621–8623. doi:10.1073/pnas.1633291100. PMC 166359. PMID 12861075.
  10. ^ Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, et al. (28 February 2022). "Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within". Frontiers in Pharmacology. 13: 791272. doi:10.3389/fphar.2022.791272. PMC 8918694. PMID 35295334.
  11. ^ Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G (July 1993). "Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts". The Journal of Cell Biology. 122 (1): 103–111. doi:10.1083/jcb.122.1.103. PMC 2119614. PMID 8314838.
  12. ^ Evans RA, Tian YC, Steadman R, Phillips AO (January 2003). "TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins". Experimental Cell Research. 282 (2): 90–100. doi:10.1016/S0014-4827(02)00015-0. PMID 12531695.
  13. ^ Ye Z, Hu Y (July 2021). "TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)". International Journal of Molecular Medicine. 48 (1). doi:10.3892/ijmm.2021.4965. PMC 8136122. PMID 34013369.
  14. ^ a b c Nieberler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, et al. (September 2017). "Exploring the Role of RGD-Recognizing Integrins in Cancer". Cancers (Basel). 9 (9): 116. doi:10.3390/cancers9090116. PMC 5615331. PMID 28869579.
  15. ^ a b Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. (February 1999). "The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis". Cell. 96 (3): 319–28. doi:10.1016/s0092-8674(00)80545-0. PMID 10025398.
  16. ^ Notni J, Šimeček J, Wester HJ (June 2014). "Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications". ChemMedChem. 9 (6): 1107–1115. doi:10.1002/cmdc.201400055. PMID 24700633.
  17. ^ Notni J, Šimeček J, Hermann P, Wester HJ (December 2011). "TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals". Chemistry. 17 (52): 14718–14722. doi:10.1002/chem.201103503. PMID 22147338.
  18. ^ Steiger K, Quigley NG, Groll T, Richter F, Zierke MA, Beer AJ, et al. (October 2021). "There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography". EJNMMI Research. 11 (1): 106. doi:10.1186/s13550-021-00842-2. PMC 8506476. PMID 34636990.
  19. ^ a b Baranyai Z, Reich D, Vágner A, Weineisen M, Tóth I, Wester HJ, et al. (June 2015). "A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform". Dalton Transactions. 44 (24): 11137–11146. doi:10.1039/C5DT00576K. PMID 25999035.
  20. ^ "Gallium(III) Ion Hydrolysis under Physiological Conditions". Bulletin of the Korean Chemical Society. 29 (2): 372–376. 20 February 2008. doi:10.5012/bkcs.2008.29.2.372. ISSN 0253-2964.
  21. ^ a b Wang B, Jiang Y, Zhu J, Wu H, Wu J, Li L, et al. (August 2024). "Fully-automated production of [68Ga]Ga-Trivehexin for clinical application and its biodistribution in healthy volunteers". Frontiers in Oncology. 14: 1445415. doi:10.3389/fonc.2024.1445415. PMC 11327152. PMID 39156699.
  22. ^ a b Singhal T, Agrawal K, Mandal S, Parida GK (November 2024). "Cancer-Specific Integrin Imaging With 68Ga-Trivehexin: A Potential Imaging for Accurate Staging of Thyroid Malignancy". Clinical Nuclear Medicine. doi:10.1097/RLU.0000000000005557. PMID 39499025.
  23. ^ Maher TM, Simpson JK, Porter JC, Wilson FJ, Chan R, Eames R, et al. (March 2020). "A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor". Respiratory Research. 21 (1): 75. doi:10.1186/s12931-020-01339-7. PMC 7099768. PMID 32216814.
  24. ^ Breuss JM, Gallo J, DeLisser HM, Klimanskaya IV, Folkesson HG, Pittet JF, et al. (June 1995). "Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling". Journal of Cell Science. 108 (Pt 6): 2241–51. doi:10.1242/jcs.108.6.2241. PMID 7673344.
  25. ^ Niu J, Li Z (September 2017). "The roles of integrin αvβ6 in cancer". Cancer Letters. 403: 128–137. doi:10.1016/j.canlet.2017.06.012. PMID 28634043.
  26. ^ Steiger K, Schlitter AM, Weichert W, Esposito I, Wester HJ, Notni J (January 2017). "Perspective of αvβ6-Integrin Imaging for Clinical Management of Pancreatic Carcinoma and Its Precursor Lesions". Molecular Imaging. 16 (1): 1536012117709384. doi:10.1177/1536012117709384. PMC 5480625. PMID 28627323.
  27. ^ a b Quigley NG, Czech N, Sendt W, Notni J (June 2021). "PET/CT imaging of pancreatic carcinoma targeting the "cancer integrin" αvβ6". European Journal of Nuclear Medicine and Molecular Imaging. 48 (12): 4107–4108. doi:10.1007/s00259-021-05443-8. PMC 8484182. PMID 34109438.
  28. ^ a b c d Rehm J, Winzer R, Pretze M, Mueller J, Notni J, Hempel S, et al. (November 2024). "αvβ6-integrin targeted PET/CT imaging in pancreatic cancer patients using 68Ga-Trivehexin". Frontiers in Nuclear Medicine. 15 (4): 148602. doi:10.3389/fnume.2024.1487602. PMC 11604418. PMID 39618940.
  29. ^ Kimura RH, Iagaru A, Guo HH (October 2023). "Mini review of first-in-human integrin αvβ6 PET tracers". Frontiers in Nuclear Medicine. 9 (3): 1271208. doi:10.3389/fnume.2023.1271208. PMC 11440954. PMID 39355045.
  30. ^ a b Rehm J, Winzer R, Notni J, Hempel S, Distler M, Folprecht G, et al. (September 2024). "Concomitant metastatic head-and-neck cancer and pancreatic cancer assessed by αvβ6-integrin PET/CT using 68Ga-Trivehexin: incidental detection of a brain metastasis". European Journal of Nuclear Medicine and Molecular Imaging. 51 (11): 3469–3471. doi:10.1007/s00259-024-06750-6. PMC 11368998. PMID 38771514.
  31. ^ a b Das SS, Ahlawat S, Thakral P, Malik D, Simecek J, Cb V, et al. (May 2024). "Potential Efficacy of 68Ga-Trivehexin PET/CT and Immunohistochemical Validation of αvβ6 Integrin Expression in Patients With Head and Neck Squamous Cell Carcinoma and Pancreatic Ductal Adenocarcinoma". Clinical Nuclear Medicine. 49 (8): 733–740. doi:10.1097/RLU.0000000000005278. PMID 38768077.
  32. ^ Wu H, Li L, Xiao Z, Li C, He Y (November 2024). "αvβ6-integrin targeted [68Ga]Ga-Trivehexin PET/CT imaging of a rare bronchial mucoepidermoid carcinoma". European Journal of Nuclear Medicine and Molecular Imaging. doi:10.1007/s00259-024-06974-6. PMID 39500808.
  33. ^ Kuyumcu S, Denizmen D, Has-Simsek D, Poyanli A, Uzum AK, Buyukkaya F, et al. (July 2024). "68Ga-Trivehexin PET/CT: a promising novel tracer for primary hyperparathyroidism". European Journal of Nuclear Medicine and Molecular Imaging. 51 (13): 3912–3923. doi:10.1007/s00259-024-06846-z. PMC 11527967. PMID 39028425.
  34. ^ Kömek H, Güzel Y, Kaplan İ, Yilmaz EE, Can C (November 2024). "Superiority of 68 Ga-Trivehexin PET/CT Over 18 F-FDG PET/CT in the Evaluation of Lymph Nodes in Patients With Breast Cancer". Clinical Nuclear Medicine. doi:10.1097/RLU.0000000000005585. PMID 39601487.

Information related to Ga-68-Trivehexin

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya