Im Sonderfall gleicher Kantenlängen , bei dem alle Flächen des Quaders Quadrate sind, ergibt sich ein Würfel. Im Fall, dass genau zwei Kantenlängen gleich sind, zum Beispiel , ergibt sich ein quadratisches gerades Prisma, man spricht gelegentlich von einer quadratischen Platte () bzw. einer quadratischen Säule ().
gegebener Länge der Diagonale oder gegebenem Umkugelvolumen das maximale Volumen
gegebenem Oberflächeninhalt die minimale Länge der Diagonale oder das minimale Umkugelvolumen
gegebenem Oberflächeninhalt das maximale Volumen
gegebenem Volumen die minimale Länge der Diagonale oder das minimale Umkugelvolumen
gegebenem Volumen den minimalen Oberflächeninhalt
hat, dann ergibt sich als Lösung jeweils der Würfel.
Jeweils zwei der sechs Optimierungsprobleme sind im Prinzip dieselbe Fragestellung mit anderen gegebenen Größen, sodass es eigentlich nur drei verschiedene Optimierungsprobleme sind. Für die genannten Optimierungsprobleme ist der Würfel der gesuchte Quader. Das gilt selbstverständlich nicht für alle Optimierungsprobleme.
Dass die Optimierungsprobleme für die Länge der Diagonale und das Umkugelvolumen jeweils dieselbe Lösung haben, ist offensichtlich, weil das Umkugelvolumen eine stetige und streng monoton steigende Funktion mit der Funktionsvariablen ist.
Angenommen, ein beliebiger Quader mit mindestens zwei verschiedenen Kantenlängen, zum Beispiel und , hätte das größte Volumen. Sein Umkugelradius ist und sein Volumen . Dann hat ein anderer Quader, nämlich der Quader mit den Kantenlängen , und den gleichen Umkugelradius und das Volumen . Wegen der Ungleichung vom arithmetischen und geometrischen Mittel, wegen und gilt und .
Also hat der beliebiger Quader mit mindestens zwei verschiedenen Kantenlängen Quader ein kleineres Volumen als der andere Quader. Daraus folgt, dass ein Quader mit mindestens zwei verschiedenen Kantenlängen nicht das größte Volumen haben kann und schließlich, dass der Quader mit nur einer Kantenlänge, also der Würfel mit 12 gleich langen Kanten, das größte Volumen aller Quader mit gegebenem Umkugelradius hat.
Entscheidend für diesen Beweis durch Widerspruch ist hier, dass das Volumen der Quader endlich sein muss, denn es ist offensichtlich kleiner als das Volumen der Umkugel, und dass die Volumenfunktion stetig ist.[1]
Netze von Quadern
Allgemeine Quader mit drei verschiedenen Kantenlängen haben 54 Netze, welche nicht durch Kongruenzabbildungen aufeinander abbildbar sind.[2] Diese sind verallgemeinerteHexominos, die nicht aus Quadraten, sondern aus Rechtecken bestehen. Das heißt, es gibt 54 Möglichkeiten, einen hohlen Quader durch Aufschneiden von 7 Kanten aufzuklappen und in der Ebene auszubreiten. Die anderen 5 Kanten verbinden jeweils die 6 Rechtecke des Netzes.
Quader mit zwei verschiedenen Kantenlängen, nämlich quadratische gerade Prismen, haben 30 Netze. Quader mit nur einer Kantenlänge, nämlich Würfel mit 12 gleich langen Kanten, haben 11 Netze.[3]
Um einen Quader so zu färben, dass keine benachbarten Flächen dieselbe Farbe haben, braucht man mindestens 3 Farben.
Verallgemeinerung
Die Verallgemeinerungen der Quader in beliebiger Dimension werden als -dimensionale Quader oder Hyperrechtecke oder Hyperquader bezeichnet. Der -dimensionale Quader hat begrenzende Seiten der Dimension k. Spezialfälle:
Wird ein geometrischerKörper im dreidimensionalenRaum in einem Würfelgitter platziert und dann durch Parallelstreckungen modifiziert, sodass ein Quadergitter entsteht, dann entstehen abhängig von der Art und Ausrichtung dieser geometrischen Körper andere geometrische Körper:
Perfekte Euler-Ziegel sind ein ungelöstes Problem der Mathematik. Es wurde bisher noch kein Beispiel für einen perfekten Euler-Ziegel gefunden, und es wurde auch nicht bewiesen, dass keiner existiert. Mithilfe vom Computern konnte gezeigt werden, dass bei einem perfekten Euler-Ziegel eine der Kanten größer als 3 · 1012 sein müsste.[6][7]
Ganzzahlige Raumdiagonalen
Es gibt Quader, bei denen sowohl die Seitenlängen a, b und c, als auch die Raumdiagonale g ganzzahlig sind. Diese Längen bilden dann ein pythagoreisches Quadrupel.
Anwendungsbeispiele
Domino
Domino ist ein Legespiel mit Spielsteinen und enthält jede Kombination aus 2 Augenzahlen von 0 bis 6 genau einmal, wobei auch Steine mit gleichen Augenzahlen vorkommen. Dabei wird die Reihenfolge der Augenzahlen nicht unterschieden. Die Abmessungen und die mittlere Dichte der quaderförmigen Steine sind
Länge: 9 Zentimeter
Breite: 4,5 Zentimeter
Höhe: 1 Zentimeter
Mittlere Dichte: 670 kg/m³
Es sind also 7 Steine mit 2 gleichen Augenzahlen, Steine mit 2 verschiedenen Augenzahlen und insgesamt 7 + 21 = 28 Steine. Daraus ergeben sich mithilfe der oben genannten Formeln das Volumen, der Oberflächeninhalt und die Masse der Dominosteine:
Volumen von einem Stein:
Gesamtvolumen:
Oberflächeninhalt von einem Stein:
Gesamter Oberflächeninhalt:
Masse von einem Stein:
Gesamtmasse:
Lift
Die offene Kabine eines Lifts ist 1,40 Meter breit, 2,00 Meter lang und 2,20 Meter hoch. Die Luft in der Kabine hat die Temperatur −10 Grad Celsius und die Dichte 1,3413 kg/m³. Durch Heizwärme erwärmt sich die Luft auf 20 Grad Celsius und die Dichte sinkt auf 1,2041 kg/m³. Der Luftdruck vorher und nachher beträgt 101325 Pascal (siehe Standardbedingungen). Aus diesen Angaben kann man die Masse der Luft in der Kabine des Lifts bei −10 Grad Celsius, bei 20 Grad Celsius und den Anteil der aus der Kabine des Lifts entweichten Luft berechnen:
Ein Schwimmbecken ist 25 Meter breit, 50 Meter lang, 2,5 Meter tief und zu 96 Prozent gefüllt. Das Wasser im Schwimmbecken hat die Temperatur 0 Grad Celsius und hat die Dichte 1,000 kg/m³. Durch Sonneneinstrahlungerwärmt sich das Wasser auf 40 Grad Celsius und 60 Prozent des Wassers verdunstet. Gleichzeitig sinkt die Dichte auf 0,996 kg/m³. Stillschweigend können wir annehmen, dass der Boden des quaderförmigen Schwimmbeckens orthogonal zum Erdmittelpunkt ist, also überall fast dieselbe Höhe über dem Meeresspiegel hat, und dass der Wasserstand des Schwimmbeckens überall gleich hoch ist.