OLukalala lw'Emiramwa egy'Ekibalangulo(a List of Luganda mathematical terms)
Emiramwa gy’Ekibalangulo emigandawaze
(Formed Luganda mathematical concepts)
Gino gy'emiramwa egy'enjawulo Mwami Muwanga Charles gy'atukkirizza ffe aba IALI NGO okuweereza abasomi ba Luganda wikipedia okuva mu kitabo kye "Luganda Mathwords: An etymological handbook for Luganda mathmatical terms"
mathematics
1. Ekibalangulo
(Mathematics).
"Essomakubala" oba "ekibalangulo" (mathematics) “sessomo” eriwagala obwongo nga lisengeka ebirowoozo ne namba. Essomo lino n’olwekyo liyamba okukulaakulanga “ EkkyO”(kisomwa “Ekkyu”) y’omuntu.
Ekibalangulo mu bumpi kiwandiikibwa “ekibalo”(maths). Gino gye gimu ku mibalanguzo( operational concepts) egyetaagisa mu sessomo lino:
(a) Kinnawansi ne Kinnawaggulu. Mu mukutule guno namba eri waggulu eyitibwa kinnawaggulu ate eri wansi kinnawansi:
11
13
Kinnawaggulu (Numerator)
Farey sequence denominators
Kinnawansi (Denominator)
(b) Kinnawansi Ekyawamu(Common Denominator)
(ii) Nambuluzo. Muno mulimu :
(a) Nambuluzo ey’awamu(Common Factor)
(b) Nambuluzo Eyawamu Esingayo (Greatest Common Factor)
(c) Enkubise Eyawamu (Common Multiple)
(d) Enkubise Eyawamu Esembayo(Lowest Common Mutlple)
Okugatta emikutule egirina kinnawansi kye kimu kuba kulya mungu buteesokoola naye bwe giba ne kinnawansi ez’enjawulo oba olona okusooka okuzuula “kinnawansi ekya’wamu”(common denominator). Okuzuula kinnawansi ekya’wamu weyambisa enkubise ey’awamu era eno gy’osooka okunonnya.
example of a set
6. Emigereko
(Sets)
Two sets
“Omugereko” (set) liba kungaanyo lya bintu oba bamemba abayitibwa erementi nga bili mu busengeke. Omugereko gutera okulagibwa n’ennyukuta nga A,B,C, ------ U,V,W, n’okweyongerayo. Erementi (bamemba) z’Omugereko zikugirwa mu bukomera bwe buti:
Eky’okulabirako;
Omugereko guyinza okubaamu erementi (bamemba) ez’entakoma (infinite) nga Omugereko gwa namba ez’ensibo (namba z’obutonde) oba ne gubaamu bamemba ab’ekkomo (finite ) nga Omugereko gwa waliifu z’oluganda.
Omugereko guyinza obutabaamu bamemba, ntegeeza obutabaamu kintu kyonna era Omugereko nga guno guyitibwa Omugereko omwangaala (empty set). Kino kiragibwa n’akabonero , ekisomwa (fi). Ebintu oba bamemba ababeera mu musengeko A balagibwa nga n (A), ekitegeeza nti n ( ) = 0, ekitegeeza nti Omugereko A teguliimu erementi yonna. Omugereko gulimu emiramwa gino :
• Omuteeko=emigereko emiteke awamu (Union of sets)
• Endaga y’Omugereko (Set notation)
• Amasang’azzira g’Emigereko /Entabiro y'emigereko (Intersection of sets)
• Enjawuzo y’Emigereko ebiri (The difference of two Sets)
• Ekitundu ky’Omugereko (Sub set)
• Veniggulaamu(Venn Diagram)
• Embaranguza z’Emigereko (Set Operations)
• Omuteeko ( union of sets ) gw’emigereko ebiri guba mugereko gwa erementi ezisangibwa mu mugereko ogumu oba gyombi . N’olwekyo , omugereko C guba muteeko gwa migereko A ne B .
Representative example of a mathematical correspondence
Omusooka – musengeko gwa miyingizo (inputs) egy’omukwanaganyo(relation) oba
Omukwataganyo -function
Omukwataganyo – mukwanaganyo nga buli muyingizo (input) gulina omufulumyo (output) gumu gwokka. Omukwataganyo gutera okulagibwa nga m(x) oba f(x) mu lungereza.
Omufulumyo – Musengeko gwa myawuzo (ranges) egy’emikwanaganyo oba omikwataganyo.
Engezeso eya layini engalamivu – Singa buli layini engalamivu ekubibwa muggulaafu eyita mu punkuti emu yokka, x guba mukwataganyo gwa y. Kyokka singa okuba layini engalamivu n’eyita mu punkuti 2, x teba mukwataganyo gwa y.
Engezeso eya layini ennesimbu – Singa buli layini ennesimbu ekubibwa eyita mu punkuti emu yokka, y eba mukwataganyo gwa x. Singa okuba layini ennesimbu eyita mu punkuti 2, y teba mukwataganyo gwa x.
“Kifuulannenge w’omukwataganyo”(the inverse of a function) ajjawo nga omusooka(domain) n’omufulunyo (range) bikyusaganyizza ebifo, ermenti zonna ez’omusooka ne zifuuka mufulumyo ate ez’omufulumyo ne zifuuka musooka.
Eky’okulabirako ekya kifuulannenge w’omukwataganya oguli mu ngeri eno:
Omukwatagenyo ogwa Nansangwawo Kifuulanenge wagwo
Singa omukwataganyo “m” gukwataganya “k” ku “g”, kino kitegeeza nti kifuulannenge w’omukwatagenyo, ekiwandiiki bwa nga M-1, akwataganya k ku g.
8. Ennyingo n'Ekibalo ky'ennyingo(Ekiyingo)
(Terms and Polynomials)
Czebyszew polynomials for n=0 to 5
Emiramwa egyetaagisa:
(i) Ennyingo (term , nomial)
(ii) Ennyingo ezifaanagana (Like Terms)
(iii) Nnyingo ezikwatagana (Like Terms)
(iv) Ennyingo ezitafaanagana (Unlike Terms)
(v) Nnyingo ezitakwatagana (Unlike Terms)
(vi) Ekiyingo=Ekibalo ky'ennyingo) (Mathematics of nomials,Polynomials)
(vii) Nnyingo emu (Monomial)
(viii) Nnyingo bbiri (Binomial)
(ix) Nnyingo satu (Trinomial)
(x) Enjawuzo eya kyebiriga ebbiri (The difference of two squares)
9. Ekibalangulo ky’Omukisa /EKM
(Probabilty)
6sided dice
Mu kibalo ky’Omukisa(Mathematics of chance, prpbability), emiramwa egyetaagisa gye gino:
• EKM (Ekibalo Ky’Omukisa)
• Ekituukiriro oba ekituuko (event)
• Ebisoboko (possibles,outcomes)
• Omugereko gw’ebisoboko (probability space, probability set)