2μ°¨μ π©=4 μ΄λ±κ° μ₯λ‘
μμμ₯λ‘ μμ, 2μ°¨μ μ΄λ±κ° μ₯λ‘ (δΊζ¬‘ε
θΆ
ηθ§ε ΄θ«, μμ΄: two-dimensional superconformal theory)μ λ€ κ°μ μ΄λμΉμ κ°μ§λ 2μ°¨μ λ±κ° μ₯λ‘ μ΄λ€.
μ μ
2μ°¨μ μ΄λ±κ° λμμ μμ±μμ λ€μκ³Ό κ°λ€.
κΈ°νΈ |
μ΄λ¦ |
λ¬΄κ² ![{\displaystyle h}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a) |
SU(2) RλμΉ νν |
νλ₯΄λ―Έμ¨ μ
|
![{\displaystyle T(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4749f82e035168e816434e3e3e7bf24e1c92e69b) |
μλμ§-μ΄λλ ν
μ |
2 |
1 |
0
|
![{\displaystyle G^{a}(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/650b402e1d884633461504b3922cbb0b9338f02e) |
μ΄μ λ₯ |
3/2 |
![{\displaystyle \mathbf {2} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/8db0cc42a494c9891ec4a9c91dc2c88d1fb65f1d) |
+1
|
![{\displaystyle {\bar {G}}^{\bar {a}}(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/88784901a72ef812c9abf5a515e7980a4bda970c) |
μ΄μ λ₯ |
3/2 |
![{\displaystyle {\bar {\mathbf {2} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d0b44cb6d30106d70ac4bfa0a0ec91b837d6352) |
β1
|
![{\displaystyle J^{i}(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e675c63f798ce7b487ee90eaa5a823474428ebe7) |
RλμΉ λ³΄μ‘΄λ₯ |
1 |
![{\displaystyle \mathbf {3} ={\mathfrak {su}}(2)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e38dd965b58eb4f106336a956150a22b5d72307) |
0
|
![{\displaystyle k}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40) |
μ€μ¬ μμ |
0 |
1 |
0
|
μ νμμ λ₯Ό μ μΈν λ€λ₯Έ μμ±μλ€μ λͺ¨λ μλ₯΄λ―ΈνΈ μ₯μ΄λ©°, μ μλ₯΄λ―ΈνΈ μλ°μ μ΄λ€.
μ€μ¬ μμ λ SU(2) μν 리 λμμ μ€μμ κ°λ€. λΉλΌμλ‘ μ€μ¬ μ ν λ λ€μκ³Ό κ°λ€.
![{\displaystyle c=6k=0,6,12,18,\dots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/e9589bcb91c2ddaa6d526f9cdc88053a0afb89f2)
μ΄λ€μ μ°μ°μ κ³± μ κ°λ λ€μκ³Ό κ°λ€. μ¬κΈ°μ λ μμ λΉνΉμ΄νμ λνλΈλ€.
![{\displaystyle T(z)T(0)=3kz^{-4}+2z^{-2}T(0)+z^{-1}\partial T(0)+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/545ab04d044caf83379b667dde429f0a3935aa21)
![{\displaystyle T(z)G(0)={\frac {3}{2}}z^{-2}G(0)+z^{-1}\partial G(0)+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/a8a8093371c41837bc639a74810f59b2097d2c8f)
![{\displaystyle T(z)J(0)=z^{-2}J(0)+z^{-1}\partial J(0)+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/05fff31aed553793421891119c8b03d05f794921)
![{\displaystyle J^{i}(z)J^{j}(0)={\frac {1}{2}}kz^{-2}\delta ^{ij}+iz^{-1}\epsilon ^{ijk}J^{k}+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce718b0df95ba1fd2d4ed3a1b6e7336b7f76ea3a)
![{\displaystyle J^{i}(z)G^{a}(0)=-{\frac {1}{2}}\sigma _{ab}^{i}z^{-1}G^{b}(0)+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/9598a05e2792ead11b5731fb2a880a3d10d7ad31)
![{\displaystyle G^{a}(z){\bar {G}}^{\bar {b}}(0)=4k\delta ^{ab}z^{-3}-4\sigma _{a{\bar {b}}}^{i}z^{-2}J^{i}(0)+z^{-1}\left(2\delta ^{ab}T(z)-2\sigma _{a{\bar {b}}}^{i}\partial J^{i}(0)\right)+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/0eeaa82fdf4d79d7ef3d3440c4033a91d6e83a5a)
μ΄λ€μ λ€μκ³Ό κ°μ λͺ¨λ μ κ°λ₯Ό κ°λλ€.
![{\displaystyle T(z)=\sum _{n}z^{n-2}L_{-n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d879a7a443fd94f742f27503e68ed6f25cbe7397)
![{\displaystyle G(z)=\sum _{r\in \mathbb {Z} +\eta }z^{r-3/2}G_{-r}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/071fdd023cd4e5f2a8ca779bc1fb40cec0ba273b)
![{\displaystyle J^{i}(z)=\sum _{n}z^{n-1}J_{-n}^{i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1df90a6515f4179e7ff39d69fd4bf63831cbe7e4)
μ¬κΈ°μ NS κ²½κ³ μ‘°κ±΄μ κ²½μ° μ΄λ©° R κ²½κ³ μ‘°κ±΄μ κ²½μ° μ΄λ€.
κ·Έλ λ€λ©΄ λͺ¨λ μ κ°μ 리 κ΄νΈλ λ€μκ³Ό κ°λ€.[1]
![{\displaystyle [L_{m},L_{n}]=(m-n)L_{m+n}+{\frac {1}{2}}k(m^{3}-m)\delta _{m+n,0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5a886b938d5489e14faef26017591d01e8732b2)
![{\displaystyle [L_{m},G_{r}^{a}]=(m/2-r)G_{m+r}^{a}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3178621307c24ab982352f9d7d360e11ffd5e4c0)
![{\displaystyle [L_{m},J_{n}^{i}]=-nJ_{m+n}^{i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e11ef33471ebeab59ea2e1a66c00bd926f6917)
![{\displaystyle [J_{m}^{i},J_{n}^{j}]=i\epsilon ^{ijk}J_{m+n}^{k}+{\frac {1}{2}}mk\delta ^{ij}\delta _{m+n,0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a418cb6dd11a256a6c3ad1219533a473e0fc767)
![{\displaystyle [J_{m}^{i},G_{r}^{a}]=-{\frac {1}{2}}\sigma _{ab}^{i}G_{m+r}^{b}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b1ec6c137ed41078080666272729d6553453d56)
![{\displaystyle \{G_{r}^{a},G_{s}^{b}\}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bd664ca8d24e9f951d15b11f85c29559d84c82f0)
![{\displaystyle \{G_{r}^{a},{\bar {G}}_{s}^{\bar {b}}\}=2\delta ^{a{\bar {b}}}L_{r+s}-2(r-s)\sigma _{a{\bar {b}}}^{i}J_{r+s}^{i}+{\frac {1}{2}}k(4r^{2}-1)\delta _{r+s,0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9d6d035f909494a72ef041c342050a2f551e58d)
λμμ λμ
NS λμμμ, , , , , λ λ€μκ³Ό κ°μ΄ λΆλΆ 리 μ΄λμλ₯Ό μ΄λ£¬λ€. μ΄λ λμμ μΌλ‘ μ μλλ μ΄λ±κ° λ³νλ€μ 리 μ΄λμμ΄λ€.
![{\displaystyle [L_{1},L_{-1}]=2L_{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/533852b850adeb1767d17f2179651a36fd84e2c5)
![{\displaystyle [L_{\pm 1},L_{0}]=\pm L_{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee9a22c0f29592ec8e05cb78bfb500523bf72a09)
![{\displaystyle [G_{\pm 12}^{a},L_{0}]=\pm {\frac {1}{2}}G_{\pm 12}^{a}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6496dbeb09ba962f8af6e06bb96a821096ab790d)
![{\displaystyle [L_{1},G_{1/2}^{a}]=[L_{-1},G_{-1/2}^{a}]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d1f3801b1c8f3835f9564e093e57332bac6ffe2)
![{\displaystyle [L_{\pm 1},G_{\mp 1/2}^{a}]=\pm G_{\pm 1/2}^{a}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49d6af3328cd6ca24da3e8145123496c2b051ebc)
![{\displaystyle [J_{0}^{i},L_{0}]=[J_{0}^{i},L_{\pm 1}]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/795db98d0705807fb912c957d9b3119a73baff1f)
![{\displaystyle [J_{0}^{i},J_{0}^{j}]=i\epsilon ^{ijk}J_{0}^{k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a4f4ca01475e98d982b393c6b74610ac0ac256)
![{\displaystyle \{G_{\pm 1/2}^{a},G_{\pm 1/2}^{b}\}=\{G_{\pm 1/2}^{a},G_{\mp 1/2}^{b}\}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe213f483fbcb56a599c5568dff38d60f76a67c)
![{\displaystyle \{G_{\pm 1/2}^{a},{\bar {G}}_{\pm 1/2}^{b}\}=2\delta ^{a{\bar {b}}}L_{\pm 1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bfeb061bec0d9e53ceef31003313f06c7718f81)
![{\displaystyle \{G_{\pm 1/2}^{a},{\bar {G}}_{\mp 1/2}^{b}\}=2\delta ^{a{\bar {b}}}L_{0}\mp \sigma _{a{\bar {b}}}^{i}J_{0}^{i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d5a382cd1118331dd39984ed4d0846e80ee609)
![{\displaystyle [J_{0}^{i},G_{\pm 1/2}^{a}]=-{\frac {1}{2}}\sigma _{ab}^{i}G_{\pm 1/2}^{b}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a3455bf802d7f657f8bc2de4730cfaead8b159b)
λ§μ°¬κ°μ§λ‘, R λμμμ, , , , , λ λ€μκ³Ό κ°μ΄ λΆλΆ 리 μ΄λμλ₯Ό μ΄λ£¬λ€.
![{\displaystyle [L_{0},L_{0}]=[G_{0}^{a},L_{0}]=[{\bar {G}}_{0}^{\bar {a}},L_{0}]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e75a9e40d2d1e3297011bc2ee9a2ecd8d4a64ac)
![{\displaystyle [J_{0}^{i},L_{0}]=[J_{0}^{i},L_{\pm 1}]=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/795db98d0705807fb912c957d9b3119a73baff1f)
![{\displaystyle [J_{0}^{i},J_{0}^{j}]=i\epsilon ^{ijk}J_{0}^{k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a4f4ca01475e98d982b393c6b74610ac0ac256)
![{\displaystyle \{G_{0}^{a},G_{0}^{b}\}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee1fe115fe914290416ac7333eb1b6798362719c)
![{\displaystyle \{G_{0}^{a},{\bar {G}}_{0}^{b}\}=2\delta ^{a{\bar {b}}}L_{0}-{\frac {1}{2}}k}](https://wikimedia.org/api/rest_v1/media/math/render/svg/818ef497107fed95c8787207eb3bdf6c570a412e)
![{\displaystyle [J_{0}^{i},G_{0}^{a}]=-{\frac {1}{2}}\sigma _{ab}^{i}G_{0}^{b}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a037af5e5371ff9fba29cc017eb32b7cb869f3f0)
νν
2μ°¨μ μ΄λ±κ° λμμ μ λν°λ¦¬ ννμ μ΄1μ°¨μ₯μ λ±κ° λ¬΄κ² λ° SU(2) μμ΄μμ€ν μ λ°λΌ λΆλ₯λλ€. μ΄λ μ μ§λ νν(μμ΄: massive representation)κ³Ό 무μ§λ νν(μμ΄: massless representation)μΌλ‘ λλλ€.[2]
|
NS κ²½κ³ μ‘°κ±΄ |
R κ²½κ³ μ‘°κ±΄
|
무μ§λ νν
|
, ![{\displaystyle 0\leq l\leq k/2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a3a98b721f57af120d719429003bd4025f8eec8) |
,
|
μ μ§λ νν
|
, ![{\displaystyle 0\leq l\leq k/2-1/2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d4a7dee72dd3cc3626d090d2508ce04f674fd39) |
,
|
μ λν°λ¦¬ μ΄λ‘ μ κ²½μ°, νλ² λ₯΄νΈ 곡κ°μ λͺ¨λ μνλ λ€μ BPS λΆλ±μμ λ§μ‘±μν¨λ€.
![{\displaystyle h\geq k/4\qquad ({\text{NS}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79b6292244a53398ef85023668c7cb2fb59ec4d6)
![{\displaystyle h\geq |l|\qquad ({\text{R}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c261dbdb88c276d504e61aa41e897d1ab62f82e)
무μ§λ ννμ μ΄ BPS λΆλ±μμ ν¬νμν¨λ€. μ μ§λ ννμ μνΌ μ§νκ° 0μ΄μ§λ§, 무μ§λ ννμ μνΌ μ§νκ° 0μ΄ μλλ€. μ μ§λ ννμμ BPS λΆλ±μμ ν¬νμν€λ κ·Ήνμ μ·¨νλ©΄ μ΄λ 무μ§λ ννμΌλ‘ λΆν΄λλ€.
λΆλ°° ν¨μ
μ΄λ±κ° μ₯λ‘ μμλ μΈ κ²½μ°μ λ¬λ¦¬ μ΄λ©°, λ°λΌμ λΆλ°° ν¨μμλ μμ΄μμ€ν (SU(2) RλμΉμ μΉ΄λ₯΄ν λΆλΆκ΅° U(1)μ λν μ ν) μ λν ν¨κ°μν° μ νλ₯΄λ―Έμ¨ μ μ λν ν¨κ°μν° λ₯Ό λ€μκ³Ό κ°μ΄ λ
립μ μΌλ‘ μ½μ
ν μ μλ€.[2]
![{\displaystyle Z(q,z,y)=\sum _{(h,q,F)}q^{h-k/4}z^{q}y^{F}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a2b45e1dc6a7063fd475435eac9d957826296d2)
μ΄ ν©μ NS κ²½κ³ μ‘°κ±΄ λλ R κ²½κ³ μ‘°κ±΄μμ μ·¨ν μ μλ€.
μ
μ΄μΌλ¬ λ€μ체 μμ 2μ°¨μ μκ·Έλ§ λͺ¨νμ μ΄λ±κ° μ₯λ‘ μ μ΄λ£¬λ€. μ΄ κ²½μ°, μ€μ μ°¨μμ μ΄μΌλ¬ λ€μ체λ SU(2) μν 리 λμ μ€μκ° μΈ μ΄λ±κ° μ₯λ‘ μ μ΄λ£¬λ€. K3 곑면 μμ μκ·Έλ§ λͺ¨νμ΄ λνμ μΈ μμ΄λ©°, μ΄ κ²½μ° μ΄λ€.
μμ©
μ΄λ±κ° μ₯λ‘ μ μμ λ€νμ κ°νμ¬ μμ λ μ΄λ‘ μ μ μν μ μλ€.[3]
μ°Έκ³ μλ£
- Sevrin, A.; Troost, W.; Van Proeyen, A. (1988λ
7μ 21μΌ). “Superconformal algebras in two dimensions with
”. 《Physics Letters B》 (μμ΄) 208 (3β4): 447β450. Bibcode:1988PhLB..208..447S. doi:10.1016/0370-2693(88)90645-4.
- Schwimmer, Adam; Seiberg, Nathan (1987λ
1μ 29μΌ). “Comments on the
superconformal algebras in two dimensions”. 《Physics Letters B》 (μμ΄) 184 (2β3): 191β196. Bibcode:1987PhLB..184..191S. doi:10.1016/0370-2693(87)90566-1.
- Ooguri, Hirosi (1989λ
10μ 20μΌ). “Superconformal symmetry and geometry of Ricci-flat KΓ€hler manifolds” (PDF). 《International Journal of Modern Physics A》 (μμ΄) 4 (17): 4303. Bibcode:1989IJMPA...4.4303O. doi:10.1142/S0217751X89001801. [κΉ¨μ§ λ§ν¬(κ³Όκ±° λ΄μ© μ°ΎκΈ°)]
κ°μ΄ 보기
κ°μ£Ό
Information related to 2μ°¨μ π©=4 μ΄λ±κ° μ₯λ‘ |