Lingkaran dalam dan lingkaran singgung luar segitiga
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Incircle and excircles of a triangle di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Dalam geometri, lingkaran dalam segitiga merupakan lingkaran terbesar yang terisi di dalam segitiga; ini bersinggung (merupakan garis singgung dengan) tiga sisi. Pusat dari lingkaran adalah pusat segitiga disebut pusat lingkaran dalam segitiga.[1]
Sebuah pusat lingkaran singgung luar[2] dari segitiga merupakan sebuah lingkaran yang terletak di luar segitiga, singgung dengan satu sisinya singgung dengan perluasan dari dua lainnya. Setiap segitiga memiliki tiga pusat lingkaran singgung luar yang berbeda, setiap garis singgung dengan salah satu dari sisi-sisi segitiga.[3]
Pusat dari lingkaran dalam, disebut pusat lingkaran dalam, dapat ditemukan sebagai perpotongan dari tiga garis bagidalam.[4][5] Pusat lingkaran singgung luar merupakan perpotongan dari garis bagi dalam dari satu sudut (di verteks , sebagai contohnya) dan garis bagi luar dari dua lainnya. Pusat dari lingkaran singgung luar ini disebut pusat lingkaran singgung luar relatif terhadap verteks , atau pusat lingkaran singgung luar.[6] Karena garis bagi dalam dari sebuah sudut tegak lurus dengan garis bagi luarnya, ini mengikuti bahwa pusat dari lingkaran dalam bersama-sama dengan tiga pusat lingkaran singgung luarnya membentuk sebuah sistem ortosentrik.[7]:p. 182
Semua poligon beraturan memiliki garis singgung lingkaran dalam untuk semua sisi, tetapi tidak semua poligon; yang ada poligon singgung.
Andaikan memiliki sebuah lingkaran dalam dengan jari-jari dan pusat . Misalkan menjadi panjangnya , adalah panjang , dan panjangnya . Juga misalkan , , dan menjadi titik singgung dimana lingkaran dalam menyinggung , , dan .
Pusat lingkaran dalam merupakan titik dimana garis bagi dalam bertemu.
Jarak dari verteks ke pusat lingkaran dalam adalah[butuh rujukan]
Koordinat trilinear
Korodinat trilinear untuk sebuah titik dalam segitiga merupakan nisbah dari semua jarak ke sisi-sisi segitiga. Karena pusat lingkaran dalam adalah jarak yang sama dari semua sisi-sisi dari segitiga, koordinat trilinear untuk pusat lingkaran dalam adalah[8]
Koordinat barisentrik
Koordinat barisentrik untuk sebuah titik dalam sebuah segitiga memberikan bobot sehingga titiknya adalah rerata berbobot dari posisi verteks segitiga. Koordinat barisentrik untuk pusat lingkaran dalam diberikan oleh[butuh rujukan]
dimana , , dan adalah panjang sisi-sisi dari segitiga, atau dengan setara (menggunakan hukum sinus) oleh
dimana , , dan adalah sudut-sudut pada tiga verteksnya.
Koordinat Cartesius
Koordinat Cartesius dari pusat lingkaran dalam adalah sebuah rerata berbobot dari koordinat dari tiga verteks menggunakan panjang sisi dari segitiga relatif terhadap keliling (yaitu, menggunakan koordinat barisentrik yang diberikan di atas, ternormalkan untuk menjumlahkan kesatuannya) sebagai bobot. Bobotnya positif sehingga pusat lingkaran dalam terletak di dalam segitiga ketika dinyatakan di atas. Jika ketiga verteksnya terletak di , , dan , dan sisi-sisinya berlawanan dengan verteks-verteks ini memiliki padanan panjang , , dan , maka pusat lingkaran dalamnya di[butuh rujukan]
Jari-jari
Jari-jari lingkaran dalam dalam sebuah segitiga dengan sisi-sisi panjang , , diberikan oleh[9]
Melambangkan pusat lingkaran dalam sebagai , jarak dari pusat lingkaran dalam ke verteks digabungkan dengan panjang dari sisi-sisi segitiga mematuhi persamaannya[10]
Kumpulan pusat-pusat segitiga dapat diberikan struktur grup di bawah perkalian secara koordinat mengenai koordinat trilinear, dalam grup ini, pusat lingkaran dalam membentuk elemen identitas.[12]
Lingkaran dalam dan sifat-sifat radiusnya
Jarak antara verteks dan titik singgung paling terdekat
Jarak dari sebuah verteks ke dua titik singgung paling terdekat adalah sama; misalnya:[13]
Sifat-sifat lainnya
Andaikan titik-titik singgung dari lingkaran dalam membagi sisi-sisi menjadi panjang dan , dan , serta dan . Maka lingkaran dalam memiliki jari-jari[14]
dan luas dari segitiganya adalah
Jika tingginya dari sisi-sisi panjang , , dan adalah , , dan , maka jari-jari lingkaran dalam adalah sepertiga dari purata harmonik tinggi ini; yaitu,[15]
Darab dari jari-jari lingkaran dalam dan jari-jari lingkaran luar dari sebuah segitiga dengan sisi-sisi , , dan adalah[16]:189,#298(d)
Beberapa hubungan di sekitar sisi-sisi, jari-jari lingkaran dalam, dan jari-jari lingkaran luar adalah:[17]
Setiap garis melalui sebuah segitiga yang kedua luas segitiga dan kelilingnya terbelah dua menuju ke pusat lingkaran segitiga (pusat lingkaran dalamnya). Terdapat baik satu, dua, atau tiga ini untuk suatu segitiga yang diberikan.[18]
Melambangkan pusat dari lingkaran dalam sebagai , kita mempunyai[19]
Jari-jari lingkaran dalam tidak lebih besar daripada sepersembilan jumlah dari tinggi.[21]:289
Jarak kuadrat dari pusat ke pusat lingkaran luar diberikan oleh[22]:232
dan jarak dari pusat lingkaran dalam dengan pusat dari lingkaran sembilan adalah[23]:232
Pusat lingkaran dalam terletak di segitiga tengah (yang verteks-verteksnya merupakan titik tengah dari sisinya).[24]:233, Lemma 1
Hubungan dengan luas dari segitiga
Jari-jari dari lingkaran dalam berkaitan dengan luas dari segitiga.[25] Nisbah dari luas lingkaran dalam dengan luas segitiga lebih kecil atau sama dengan , dengan persamaannya berlaku hanya untuk segitiga sama sisi.[26]
Andaikan memiliki sebuah lingkaran dalam dengan jari-jari dan pusat . Misalkan menjadi panjang , menjadi panjang , dan menjadi panjang . Sekarang, lingkaran dalam singgung dengan pada suatu titik , dan demikian adalah siku-siku. Demikian, memiliki alas dengan panjang dan tinggi , dan jadi memiliki luas . Dengan cara yang serupa, memiliki luas dan memiliki luas . Karena ketiga segitiga ini memisahkan , kita lihat bahwa luas dari adalah:[butuh rujukan]
dan
dimana adalah luas dari dan adalah semiperimeternya.
Untuk sebuah rumus yang alternatif, anggap . Ini adalah segitiga siku-siku dengan satu sisinya sama dengan dan sisi lainnya sama dengan . Kesamaannya benar untuk . Segitiga yang besar dikomposisi enam segitiga dan luas totalnya adalah:[butuh rujukan]
Segitiga dan titik Gergonne
Segitiga Gergonne (dari ) didefinisikan oleh tiga titik singgung dari lingkaran dalam pada tiga sisi. Titik singgung berlawanan dilambangkan , dll.
Segitiga Gergonne, , juga dikenal sebagai segitiga kontak atau segitiga singgung dalam dari . Luasnya adalah
dimana , , dan adalah luasnya, jari-jari dari lingkaran dalam dari segitiga asalnya, dan , , serta adalah panjang sisi dari segitiga asalnya. Ini adalah luas yang sama seperti yang dari segitiga singgung luar.[27]
Tiga garis , , dan memotong dalam sebuah titik tunggal disebut titik Gergonne, dilambangkan sebagai (pusat segitiga ). Titik Gergonne terletak di cakram ortosentroidal terbuka tertusuk di pusatnya sendiri, dan dapat menjadi suatu titik di situ.[28]
Titik Gergonne dari sebuah segitiga memiliki sebuah bilangan sifat-sifat, termasuk bahwa ini adalah sebuah titik simedian dari segitiga Gergonne.[29]
Koordinat trilinear untuk verteks-verteks dari segitiga singgung dalam diberikan oleh[butuh rujukan]
Koordinat trilinear untuk titik Gergonne diberikan oleh[butuh rujukan]
Lingkaran singgung luar dan pusat lingkaran singgung luar
Sebuah lingkaran singgung luar[30] dari segitiga adalah sebuah lingkaran yang terletak di luar segitiga, bersinggung dengan satu sisinya dan singgung dengan perluasan dari keduanya. Setiap segitiga memiliki tiga lingkaran yang berbeda, setiap singgung ke satu dari sisi-sisi segitiga.[3]
Pusat sebuah lingkaran singgung luar merupakan perpotongan dari garis bagi dalam satu sudut (di verteks , contohnya) dan garis bagi luar dari dua lainnya. Pusat lingkaran singgung ini disebut pusat lingkaran singgung luar relatif terhadap verteks dari , atau pusat lingkaran singgung luar dari .[31] Karena garis bagi dalam sudut tegak lurus dengan garis bagi luarnya, ini mengikuti bahwa pusat dari lingkaran dalam bersama dengan tiga pusat lingkaran singgung luar membentuk sebuah sistem ortosentrik.[32]:182
Misalkan lingkaran singgung di sisi bersinggung di sisi diperpanjang di , dan misalkan jari-jari lingkaran singgung luar menjadi dan pusatnya mnejadi . Maka merupakan sebuah tinggi dari , jadi memiliki luas . Dengan menggunakan argumen yang serupa, memiliki luas dan memiliki luas . Demikian luasnya dari adalah
.
Jadi, oleh simetri, melambangkan sebagai jari-jari lingkaran dalam,
Dari rumus di atas salah satunya dapat melihat bahwa lingkaran singgun luar selalu lebih besar dari lingkaran dalam dan bahwa lingkaran singgung paling terbesar merupaakan salah satu bersinggung dengan sisi terpanjang serta lingkaran singgung luar bersinggung dengan sisi terpendek. Lebih lanjut, menggabungkan rumus-rumus ini menghasilkan:[36]
Sifat-sifat lingkaran singgung luar lainnya
Lambung lingkar dari lingkaran singgung luar secara internal menyinggung dengan setiap dari lingkaran singgung luar dan dengan demikian merupakan sebuah lingkaran Apollonius.[37] Jari-jari lingkaran Apollonius ini adalah dimana adalah jari-jari lingkaran dalam dan adalah semiperimeter dari segitiga.[38]
Hubungan berikut berlaku di antara jari-jari lingkaran dalam , jari-jari lingkaran luar , semiperimeter , dan jari-jari lingkaran singgung luar , , :[39]
Lingkaran melalui pusat-pusat dari tiga lingkaran singgung luar memiliki jari-jari .[40]
Segitiga Nagel atau segitiga singgung luar dilambangkan oleh verteks-verteks , , dan yang terdapat tiga titik dimana lingakran singgung luar menyinggung rujukan dan dimana adalah lawannya dari , dst. ini juga dikenal sebagai segitiga singgung luar. Lingkaran luar dari singgung luar disebut lingkaran Mandart.[butuh rujukan]
Tiga garis , , dan disebut pembagi dari segitiga, mereka membagi garis setiap keliling dari segitiga,[butuh rujukan]
Pembaginya memotong dalam sebuah titik tunggal, titik Nagel segitiga (atau pusat segitiga).
Koordinat trilinear untuk verteks-verteks dari segitiga singgung luar diberikan oleh[butuh rujukan]
Koordinat trilinear untuk titik Nagel diberikan oleh[butuh rujukan]
Dalam geometri, lingkaran sembilan titik merupakan sebuah lingkaran yang dapat dikonstruksikan untuk suatu segitiga yang diberikan. Ini dinamakan demikian karena ini lewat melalui sembilan titik konsiklik bermakna didefinisikan dari segitiga. Sembilan titik ini adalah:[42][43]
Titik tengah dari ruas garis dari setiap verteks-verteks segitiga ke titik tinggi (dimana tiga ketinggiannya bertemu; ruas garis ini terletak pada masing-masing ketinggiannya).
... lingkarannya yang lewat melalui kaki dari tinggi segitiga bersinggungan dengan semua empat lingkaran yang pada gilirannya bersinggungan dengan tiga sisi dari segitiga ... (Feuerbach 1822)
Titik perpotongan dari garis bagi sudut dalam dengan ruas , , dan adalah verteks-verteks dari segitiga pusat dalam. Koordinat trilinear untuk verteks-verteks dari segitiga pusat dalam diberikan oleh
Segitiga pusat singgung luar dari sebuah segitiga acuan memiliki verteks-verteks pada pusat dari lingkaran singgung luar segitiga acuan. Sisinya pada garis bagi sudut luar dari segitiga acuan (lihat gambar pada halaman di atas). Koordinat trilinear untuk verteks-verteks mengenai segitiga pusat singgung luar diberikan oleh[butuh rujukan]
Persamaan untuk empat lingkaran
Misalkan menjadi sebuah titik peubah dalam koordinat trilinear, dan misalkan , , dan . Keempat lingkaran digambarkan di atas diberikan dengan setara oleh baik dari dua persamaan yang diberikan:[44]
Lingkaran dalam:
Lingkaran singgung luar :
Lingkaran singgung luar :
Lingkaran singgung luar :
Teorema Euler
Teorema Euler menyatakan bahwa dalam sebuah segitiga:
dimana dan adalah jari-jari lingkaran luar dan jari-jari lingkaran dalam masing-masing, dan adalah jarak antara pusat lingkaran luar dan pusat lingkaran dalam.
Untuk lingkaran singgung luar, persamaannya menyerupai:
dimana merupakan jari-jari mengenai salah satu dari lingkaran singgung luar, dan adalah jarak antara pusat lingkaran luar dan pusat lingkaran singgung luarnya.[45][46][47]
Perampatan dengan poligon lainnya
Beberapa (tapi tidak semua) segi empat memiliki sebuah lingkaran dalam. Ini disebut segi empat singgung. Di antaranya banyak sifat-sifat yang mungkin paling terpenting adalah bahwa dua pasangannya mengenai sisi berhadapan memiliki jumlah yang sama. Ini disebut teorema Pitot.[48]
Lebih umumnya, sebuah poligon dengan suatu jumlah sisi bahwa memiliki sebuah lingkaran dalam (yaitu, salah satunya yang bersinggung dengan setiap sisi disebut sebuah poligon singgung.[butuh rujukan]
^Baker, Marcus, "A collection of formulae for the area of a plane triangle," Annals of Mathematics, part 1 in vol. 1(6), January 1885, 134-138. (See also part 2 in vol. 2(1), September 1885, 11-18.)
Altshiller-Court, Nathan (1925), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (edisi ke-2), New York: Barnes & Noble, LCCN52013504