Grup Lie
Dalam matematika, grup Lie (/liː/ "Lee") adalah grup yang merupakan lipatan berjenis. Lipatan adalah ruang lokal ruang Euklides, sedangkan grup mendefinisikan abstrak, konsep umum perkalian dan pengambilan invers (pembagian). Menggabungkan dua ide ini, kita akan mendapatkan grup kontinu dimana poin dikalikan secara kebersamaan dan kebalikannya dapat diambil. Jika, sebagai penambahan, perkalian, dan pengambilan invers didefinisikan sebagai halus (terdiferensiasi), maka kita mendapatkan rumus grup Lie. Grup Lie diberikan sebuah model alami untuk konsep simetri kontinu, contohnya adalah simetri rotasi dalam tiga dimensi (diberikan oleh grup ortogonal khusus ). Grup Lie sering digunakan di banyak bagian matematika dan fisika modern. Grup Lie pertama kali ditemukan dengan mempelajari subgrup matriks dalam or , grup dari matriks inver di atas atau . Ini disebut sebagai grup klasik, karena konsepnya telah diperluas jauh melampaui asal-usulnya. Grup Lie dinamai menurut matematikawan asal Norwegia yaitu Sophus Lie (1842–1899) yang memberikan dasar teori grup transformasi kontinu. Motivasi asli Lie untuk memperkenalkan grup Lie adalah untuk model kesimetrian kontinu dengan persamaan diferensial yang sama bahwa grup hingga digunakan dalam teori Galois untuk model simetri diskrit persamaan aljabar. IkhtisarGrup Lie adalah lipatan berjenis halus dan dengan demikian dapat dipelajari menggunakan kalkulus diferensial berbeda dengan grup topologi umum. Salah satu ide kunci dalam teori grup Lie adalah mengganti objek global grup dengan versi lokal atau linierisasi. Grup Lie sendiri disebut sebagai "grup infinitesimal" dan dikenal sebagai aljabar Lie. Grup Lie memainkan peran yang sangat besar dalam geometri modern unruk beberapa tingkatan yang berbeda. Felix Klein berpendapat dalam program Erlangen dapat mempertimbangkan berbagai "geometri "dengan menentukan grup transformasi yang sesuai yang menghilangkan sifat geometris invarian. Jadi geometri Euklides dengan pilihan grup E(3) dari transformasi jarak ruang Euklides R3 konformal geometri dengan memperbesar grup ke grup konformal, sedangkan dalam geometri proyektif tertarik pada sifat invarian di bawah grup proyektif. Ide ini kemudian mengarah pada gagasan tentang sebuah struktur-G, dimana G adalah grup Lie dari simetris "lokal" dari lipatan. Grup Lie dan aljabar Lie memainkan peran utama dalam fisika modern, dengan grup Lie biasanya memainkan peran sebagai simetri sistem fisik. Di sini, wakilan dari grup Lie atau aljabar Lie sangat penting untuk penggunaannya. Teori representasi digunakan secara luas dalam fisika partikel. Grup wakilannya sangat penting untuk digunakan grup rotasi S(3) atau penutup ganda SU(2), grup satuan khusus SU(3) dan grup Poincaré. Pada tingkat "global", setiap grup Lie aksi pada objek geometris, yaitu Riemannian atau lipatan simplektis, aksi ini memberikan ukuran dan menghasilkan struktur aljabar yang banyak. Adanya simetri kontinu yang diekspresikan melalui grup Lie aksi pada lipatan menempatkan batasan yang kuat pada geometrinya dan memfasilitasi analisis pada lipatan. Grup Lie aksi sangat penting dalam penggunaannya, dan dipelajari dalam teori wakilan. Pada 1940-an-1950-an, Ellis Kolchin, Armand Borel, dan Claude Chevalley menyadari bahwa banyak hasil dasar mengenai grup Lie yang dikembangkan sepenuhnya secara aljabar sebagai teori grup aljabar yang ditentukan melalui sembarang medan. Wawasan ini membuka kemungkinan baru dalam aljabar murni, dengan memberikan konstruksi seragam untuk sebagian besar grup sederhana hingga serta dalam geometri aljabar. Teori bentuk automorfik, cabang penting dari teori bilangan modern, berurusan secara ekstensif dengan analogi grup Lie selama gelanggang Adele; bilangan p-adik grup Lie memainkan peran penting dengan melalui koneksi dengan representasi Galois dalam teori bilangan. Definisi dan contohGrup Lie riil adalah grup merupakan berdimensi riil hingga lipatan halus, dimana operasi grup perkalian dan inversi adalah peta halus. Maka perkalian grup, adalah jadi μ adalah pemetaan halus dari produk berjenis G × G sebagai G. Kedua persyaratan ini dapat digabungkan menjadi satu persyaratan yaitu pemetaan sebagai pemetaan mulus dari produk berjenis yaitu G. Grup Matriks LieMaka sebagai grup matriks invers dengan entri dalam . Subgrup tertutup dari adalah grup Lie[1] yang disebut matriks grup Lie Karena sebagian besar contoh dari grup Lie direalisasikan sebagai matriks grup Lie, beberapa buku teks membatasi perhatian pada kelas ini, termasuk yang ada dalam Hall[2] dan Rossmann.[3] Membatasi sebuah matriks grup Lie dengan cara menyederhanakan definisi aljabar Lie dan peta eksponensial. Berikut ini adalah contoh standar grup matriks Lie.
Semua contoh sebelumnya termasuk dalam tajuk grup klasik. Konsep terkaitGrup Lie kompleks didefinisikan dengan cara yang sama menggunakan lipatan kompleks yang sebenarnya (contoh: ), dan menggunakan alternatif pelengkap metrik dari , grup topologi dimana setiap titik memiliki lingkungan p-adik. Masalah kelima Hilbert menanyakan apakah untuk mengganti lipatan yang dibedakan dengan topologi atau analitik dapat menghasilkan contoh baru. Jawaban atas pertanyaan ini ternyata negatif: pada tahun 1952 matematikawan Gleason, Montgomery dan Zippin menunjukkan bahwa jika G adalah lipatan topologi, maka tepat satu struktur analitik pada G yang mengubah menjadi grup Lie (lihat pula Konjektur Hilbert–Smith). Jika lipatan dasar yang berdimensi tak hingga (misalnya, lipatan Hilbert), maka sampai pada gagasan tentang grup Lie berdimensi tak hingga. Dimungkinkan untuk mendefinisikan analogi dari banyak grup Lie di atas bidang hingga, dan memberikan sebagian besar contoh grup sederhana hingga. Definisi topologiGrup Lie dapat didefinisikan sebagai (Hausdorff) grup topologi dimana elemen tersebut adalah identitas, terlihat seperti grup transformasi, tanpa referensi ke lipatan yang dibedakan.[4] Pertama, definisikan grup Lie linear jauh menjadi subgrup G dari grup linear umum maka
Misalnya, subgrup tertutup dari ; yaitu, matriks grup Lie memenuhi kondisi di atas. Maka grup Lie didefinisikan sebagai grup topologi (1) secara lokal isomorfik dekat identitas ke grup Lie linear dan (2) memiliki banyak komponen yang terhubung. Menunjukkan definisi topologi ekuivalen dengan yang biasa bersifat teknis (dan pembaca pemula harus melewatkan yang berikut) tetapi dilakukan sebagai berikut:
Definisi topologi sebagai dua grup Lie isomorfik sebagai grup topologi, maka isomorfik adalah grup Lie. Faktanya, prinsip umum bahwa untuk sebagian besar, topologi grup Lie dengan hukum grup menentukan geometri grup. Contoh pertama
Bukan contohUntuk contoh grup dengan elemen tak terhitung yang bukan grup Lie di bawah topologi tertentu. Grup diberikan oleh dengan sebuah bilangan irasional adalah subgrup dari torus yang bukan grup Lie diberikan oleh topologi subruang.[6] Jika mengambil lingkungan dari sebuah titik dengan : contoh, bagian dari dalam adalah terputus. Grup dengan rotasi di sekitar torus tanpa mencapai titik spiral sebelumnya dan dengan demikian sebagai . Grup diberikan topologi yang berbeda, dimana jarak antara dua titik didefinisikan sebagai panjang dari jalur terpendek dalam grup sebagai gabungan dengan . Dalam topologi ini, diidentifikasi secara homeomorfis dengan garis riil untuk mengidentifikasi setiap elemen dengan bilangan dalam definisi . Dengan topologi ini, sebagai grup bilangan riil yang ditambahkan, oleh karena itu merupakan grup Lie. Grup adalah contoh gelanggang dari "subgrup Lie" dari grup Lie yang tidak tertutup. Lihat pembahasan subgrup Lie di bawah ini pada bagian tentang konsep dasar. Lebih banyak contoh dari grup LieGrup Lie terdapat di seluruh materi matematika dan fisika. Grup matriks atau grup aljabar adalah grup matriks, misalnya: ortogonal dan grup simplektis, dan ini memberikan sebagian besar yang umum contoh dari Lie. Dimensi satu dan duaSalah satu grup Lie yang terhubung dengan dimensi satu adalah garis riil dengan operasi grup menjadi penjumlahan dan grup lingkaran bilangan kompleks dengan nilai absolut satu dengan operasi grup menjadi perkalian. grup dilambangkan sebagai sebagai grup matriks uniter . Dalam dua dimensi, jika membatasi hanya pada grup yang terhubung, maka diklasifikasikan oleh aljabar Lie. Ada (hingga isomorfisme) hanya dua aljabar Lie berdimensi dua. Grup Lie yang terhubung secara sederhana adalah dengan operasi grup sebagai penjumlahan vektor dan grup affin dalam dimensi satu, dijelaskan di sub-bagian sebelumnya di bawah "contoh pertama". Contoh tambahan
KonstruksiAda beberapa cara standar untuk membentuk grup Lie yang baru dari lama:
Pengertian terkaitBeberapa contoh grup yang bukan grup Lie (kecuali dalam pengertian solvabel bahwa setiap grup banyak dapat dilihat sebagai grup Lie 0 dimensi, dengan topologi diskrit), adalah:
Konsep dasarPeta eksponensialPeta eksponensial untuk aljabar Lie dari grup linear umum ke ditentukan dengan matriks eksponensial yang diberikan oleh deret pangkat biasa untuk matriks : Jika adalah subgrup tertutup dari , maka peta eksponensial mengambil aljabar Lie dari menjadi ; dengan demikian, memiliki peta eksponensial untuk semua grup matriks. Setiap elemen yang hampir dekat dengan identitas adalah eksponensial matriks dalam aljabar Lie.[7] Definisi di atas mudah digunakan, tetapi tidak ditentukan untuk grup Lie yang bukan grup matriks, dan tidak jelas bahwa peta eksponensial grup Lie tidak bergantung pada wakilannya. Kita dapat menyelesaikan kedua masalah tersebut menggunakan definisi yang abstrak dari peta eksponensial yang berfungsi untuk semua grup Lie, sebagai berikut. Untuk setiap vektor dalam aljabar Lie dari yaitu ruang bersinggungan pada identitas, yang membuktikan bahwa subgrup satu parameter unik dirumuskan . Bahwa adalah subgrup satu parameter berarti adalah peta mulus dan untuk semua dan : Operasi di sisi kanan adalah perkalian grup dalam . Kesamaan formal rumus ini dengan yang valid untuk fungsi eksponensial membenarkan definisi tersebut Ini disebut peta eksponensial, dan memetakan aljabar Lie dalam grup Lie . Ini memberikan diffeomorfisme antara lingkungan dari 0 dan lingkungan dalam . Peta eksponensial ini merupakan generalisasi dari fungsi eksponensial untuk bilangan riil, maka adalah aljabar Lie dari kelompok Lie bilangan riil positif dengan perkalian, untuk bilangan kompleks, maka adalah aljabar Lie dari grup Lie dari bilangan kompleks bukan nol dengan perkalian) dan untuk matriks (karena dengan komutator biasa adalah aljabar Lie dari grup Lie dari semua matriks invers). Karena peta eksponensial bersifat konjektur di beberapa lingkungan dari adalah hal umum untuk elemen aljabar Lie infinitesimal generator dari grup . Subgrup sebagai adalah komponen identitas . Peta eksponensial dan aljabar Lie menentukan struktur grup lokal dari setiap grup Lie yang terhubung, karena rumus Baker–Campbell–Hausdorff: lingkungan dari elemen nol yang dirumuskan , maka dimana istilah yang dihilangkan diketahui dan melibatkan kurung Lie dari empat elemen atau lebih. Jika dan komutator, rumus tersebut direduksi menjadi hukum eksponensial yang dikenal sebagai Peta eksponensial menghubungkan homomorfisme grup Lie. Artinya, jika adalah homomorfisme grup Lie dan peta induksi aljabar Lie yang tepat, maka untuk semua yaitu Dengan kata lain, diagram berikut komutatif,[Catatan 1] Singkatnya, exp adalah transformasi alami dari functor Lie ke identitas funktor pada kategori grup Lie. Peta eksponensial dari aljabar Lie ke grup Lie tidak selalu ekspresif, bahkan jika grup tersebut terhubung yang memetakan ke grup Lie untuk grup terhubung yang kompak atau nilpoten. Subgrup LieSubgrup Lie dari grup Lie adalah grup Lie himpunan bagian dari dan peta inklusi dari ke yang merupakan injektif pencelupan dan homomorfisme grup. Menurut teorema Cartan, subgrup tertutup dari mengetahui struktur halus unik yang menjadikannya sebuah subgrup tancapan Lie dari , yaitu sebuah subgrup Lie sedemikian rupa sehingga peta inklusi adalah penyematan mulus. Banyak contoh subgrup non-tertutup; misalnya mengambil sebagai torus berdimensi 2 atau lebih besar, dan sebagai subgrup satu parameter dari lerengan irasional, yaitu salah satu dalam G. Maka grup Lie homomorfisme dengan . penutupan dari sebagai sub-torus . peta eksponensial menghasilkan korespondensi satu-ke-satu antara subgrup Lie terhubung dari grup Lie yang terhubung dan subaljabar dari aljabar Lie .[8] Biasanya, subgrup yang sesuai dengan subaljabar bukanlah subgrup tertutup. Tidak ada kriteria yang didasarkan pada struktur untuk menentukan subaljabar, dimana yang sesuai dengan subgrup tertutup. WakilanSalah satu aspek penting dari studi grup Lie adalah wakilan, yaitu cara bertindak (secara linear) pada ruang vektor. Dalam fisika, grup Lie sering kali menyandikan kesimetrian sistem fisik. Cara menggunakan simetri ini untuk membantu menganalisis sistem sering kali melalui teori wakilan. Pertimbangkan, misalnya, persamaan Schrödinger yang tidak bergantung waktu dalam mekanika kuantum, . Asumsikan sistem yang dimaksud grup rotasi SO(3) sebagai simetri, artinya operasi Hamiltonian komutatif dengan aksi SO(3) pada fungsi gelombang . Salah satu contoh penting dari sistem hal itu adalah atom hidrogen. Asumsi tersebut tidak berarti bahwa solusi adalah fungsi invarian secara rotasi. Sebaliknya, hal itu berarti bahwa ruang dari solusi adalah invarian dalam rotasi (untuk setiap nilai tetap ). Ruang ini, merupakan wakilan dari SO(3). Wakilan ini telah diklasifikasikan dan mengarah ke penyederhanaan penyederhanaan masalah, pada dasarnya mengubah persamaan diferensial parsial tiga dimensi menjadi persamaan diferensial biasa satu dimensi. Kasus grup Lie kompak terhubung K (termasuk kasus SO(3) yang baru saja disebutkan) sangat mudah ditangani.[9] Dalam hal ini, setiap wakilan berdimensi-hingga dari K terurai sebagai jumlah langsung dari wakilan yang tidak direduksi. Wakilan yang tidak direduksi, pada gilirannya, diklasifikasikan oleh Hermann Weyl. Klasifikasi adalah dalam istilah "bobot tertinggi" dari representasi. Klasifikasi ini terkait erat dengan klasifikasi wakilan dari aljabar Lie semisederhana. Dengan mempelajari wakilan satuan (secara umum berdimensi-tak-hingga) dari suatu grup Lie yang berubah-ubah (tidak kompak). Misalnya, untuk memberikan deskripsi eksplisit yang relatif sederhana tentang wakilan dari grup SL(2,R) dan wakilan dari grup Poincaré. Sejarah awalMenurut sumber paling otoritatif pada sejarah awal grup Lie (Hawkins, hal. 1), Sophus Lie menganggap musim dingin tahun 1873–1874 sebagai tanggal lahir teorinya tentang grup kontinu. Namun, Hawkins menyatakan bahwa "aktivitas penelitian Lie yang luar biasa selama periode empat tahun dari musim gugur 1869 hingga musim gugur 1873" yang mengarah pada penciptaan teori (ibid). Beberapa ide awal Lie dikembangkan dalam kolaborasi erat dengan Felix Klein. Lie bertemu dengan Klein setiap hari dari Oktober 1869 hingga 1872 di Berlin dari akhir Oktober 1869 hingga akhir Februari 1870, dan di Paris, Göttingen dan Erlangen dalam dua tahun berikutnya (ibid, hal. 2). Lie menyatakan bahwa semua hasil utama diperoleh pada tahun 1884. Tetapi selama tahun 1870-an semua makalahnya (kecuali catatan pertama) diterbitkan di jurnal Norwegia yang menghambat pengakuan atas karya tersebut di seluruh Eropa (ibid, hal 76). Pada tahun 1884, matematikawan muda asal Jerman, Friedrich Engel, datang untuk bekerja dengan Lie pada risalah sistematis untuk mengekspos teorinya tentang grup kontinu. Dari upaya ini dihasilkan tiga jilid Theorie der Transformationsgruppen, diterbitkan pada tahun 1888, 1890, dan 1893. Istilah groupes de Lie pertama kali muncul dalam bahasa Prancis pada tahun 1893 dalam tesis murid Lie, Arthur Tresse.[10] Ide Lie tidak terpisah dari matematika lainnya. Faktanya, ketertarikannya pada geometri persamaan diferensial pertama kali dimotivasi oleh karya Carl Gustav Jacobi, pada teori persamaan diferensial parsial orde pertama dan pada persamaan mekanika klasik. Banyak dari karya Jacobi diterbitkan secara anumerta pada tahun 1860-an, membangkitkan minat yang sangat besar di Prancis dan Jerman (Hawkins, hal.43). Idée fixe Lie adalah pengembangan teori kesimetrian persamaan diferensial yang diselesaikan oleh Évariste Galois untuk persamaan aljabar: yaitu, untuk mengklasifikasikannya dalam teori grup. Lie dan matematikawan lainnya menunjukkan persamaan yang paling penting untuk fungsi khusus dan polinomial ortogonal cenderung muncul dari kesimetrian teoretis grup. Dalam karya awal Lie, idenya adalah untuk membangun teori grup kontinu, untuk melengkapi teori kelompok diskrit yang telah dikembangkan dalam teori bentuk modular, di tangan Felix Klein dan Henri Poincaré. Aplikasi awal yang ada dalam pikiran Lie adalah teori persamaan diferensial. Pada model teori Galois dan persamaan polinomial, konsep penggeraknya adalah teori yang mampu menyatukan, dengan mempelajari simetri, seluruh luas persamaan diferensial biasa. Namun, harapan bahwa Teori Kebohongan akan menyatukan seluruh bidang persamaan diferensial biasa tidak terpenuhi. Metode simetri untuk ODE terus dipelajari, namun tidak mendominasi materi. Ada teori Galois diferensial, tetapi dikembangkan oleh orang lain, seperti Picard dan Vessiot, dan ini memberikan teori kuadratur, integral tak hingga. Dorongan tambahan untuk mempertimbangkan kelompok berkelanjutan berasal dari gagasan Bernhard Riemann, pada dasar-dasar geometri, dan pengembangan lebih lanjut mereka di tangan Klein. Jadi tiga tema utama dalam matematika abad ke-19 digabungkan oleh Lie dalam menciptakan teori barunya: ide simetri, seperti yang dicontohkan oleh Galois melalui pengertian aljabar dari grup; teori geometri dan solusi eksplisit dari persamaan diferensial mekanika, dikerjakan oleh Poisson dan Jacobi; dan pemahaman baru tentang geometri yang muncul dalam karya Plücker, Möbius, Grassmann dan lainnya, dan berpuncak pada visi revolusioner Riemann tentang subjek tersebut. Meskipun saat ini Sophus Lie diakui sebagai pencipta teori kelompok berkelanjutan, langkah besar dalam pengembangan teori struktur mereka, yang memiliki pengaruh besar pada perkembangan matematika selanjutnya, dibuat oleh Wilhelm Killing, yang pada tahun 1888 menerbitkan makalah pertama dalam seri berjudul Die Zusammensetzung der stetigen endlichen Transformationsgruppen (Komposisi grup transformasi hingga kontinu) (Hawkins, hlm. 100). Pekerjaan Pembunuhan, kemudian disempurnakan dan digeneralisasikan oleh Élie Cartan, mengarah ke klasifikasi aljabar Lie setengah sederhana, Teori Cartan tentang ruang simetris, dan deskripsi Hermann Weyl tentang representasi dari grup Lie yang kompak dan setengah sederhana. Pada tahun 1900 David Hilbert menantang ahli teori Lie dengan Masalah Kelima yang dipresentasikan pada Kongres Internasional Ahli Matematika di Paris. Weyl membawa periode awal perkembangan teori kelompok Lie membuahkan hasil, karena tidak hanya dia mengklasifikasikan representasi tak tersederhanakan dari kelompok Lie semisimple dan menghubungkan teori grup dengan mekanika kuantum, tetapi dia juga menempatkan teori Lie itu sendiri pada pijakan yang lebih kokoh dengan secara jelas menyatakan perbedaan antara grup sangat kecil Lie (yaitu, Lie algebras) dan grup Lie yang sesuai, dan mulai menyelidiki topologi grup Lie.[11] Teori kelompok Lie secara sistematis dikerjakan ulang dalam bahasa matematika modern dalam sebuah monograf oleh Claude Chevalley. Konsep grup Lie, dan kemungkinan klasifikasiGrup Lie dianggap sebagai grup kesimetrian yang bervariasi dengan polos. Contoh kesimetrian termasuk rotasi di sekitar sumbu. Yang harus dipahami adalah sifat transformasi 'kecil', misalnya, rotasi melalui sudut-sudut kecil, yang menghubungkan transformasi di dekatnya. Objek matematika yang menangkap struktur ini disebut aljabar Lie (Lie sendiri menyebutnya "grup infinitesimal"). Dapat didefinisikan karena grup Lie adalah lipatan polos, sehingga memiliki ruang tangen pada setiap titik. Aljabar Lie dari setiap grup Lie kompak (kira-kira: salah satu yang kesimetriannya membentuk himpunan hingga) dapat didekomposisi sebagai jumlah langsung dari aljabar Lie Abelian dan sejumlah sederhana. Struktur aljabar Lie abelian secara matematis tidak menarik, karena tanda kurung Lie identik dengan nol, minatnya terdapat pada ringkasan sederhana. Karenanya muncul pertanyaan, sebagai berikut: Apa aljabar Lie sederhana dari grup kompak? Ternyata mereka kebanyakan ke dalam empat keluarga tak hingga, "aljabar Lie klasik" An, Bn, Cn dan Dn, yang dimiliki deskripsi sederhana dalam hal kesimetrian ruang Euklides. Tetapi hanya ada lima "aljabar Lie eksepsional" yang tidak termasuk dalam salah satu keluarga ini. E8 adalah yang terbesar. Grup Lie diklasifikasikan menurut sifat aljabar, yaitu sederhana, semi-sederhana, berpenyelesaian, nilpoten, abelian, keterhubungan, yaitu terkoneksi atau terhubung sederhana, dan kekompakan. Hasil utama pertama adalah dekomposisi Levi yang mengatakan bahwa setiap grup Lie yang terhubung sederhana adalah produk semilangsung dari subgrup normal yang dapat dipecahkan dan subgrup semisederhana.
Komponen identitas dari setiap grup Lie adalah subgrup normal terbuka, dan grup hasil bagi adalah grup diskrit. Sampul universal dari setiap grup Lie yang terhubung adalah grup Lie yang terhubung secara sederhana, dan sebaliknya setiap grup Lie yang terhubung adalah hasil bagi dari grup Lie yang terhubung secara sederhana oleh subgrup normal diskrit dari pusat. Setiap grup Lie G diuraikan menjadi grup diskrit sederhana, dan abelian dengan cara kanonik sebagai berikut. Ditulis sebagai:
maka, memiliki urutan subgrup normal
Kemudian
Ini digunakan untuk mengurangi beberapa masalah tentang grup Lie (seperti menemukan wakilan uniter) untuk masalah yang sama untuk grup sederhana yang terhubung dan sungrup nilpoten dan dipecahkan dengan dimensi yang lebih kecil.
Lihat pulaCatatanCatatan penjelasan
Kutipan
Referensi
|