Artikel ini perlu diterjemahkan ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa selain Indonesia. Jika halaman ini ditujukan untuk komunitas berbahasa tersebut, halaman itu harus dikontribusikan ke Wikipedia bahasa tersebut. Lihat daftar bahasa Wikipedia . Artikel yang sama sekali tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2 . Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak menyalin hasil terjemahan tersebut ke artikel, karena umumnya merupakan terjemahan berkualitas rendah .
Berikut ini adalah daftar dari beberapa bentuk matematis terdefinisi dengan baik .
Kurva rasional
Derajat 2
Derajat 3
Derajat 4
Derajat 5
Derajat 6
Keluarga dengan derajat variabel
Kurva dari genus satu
Kurva dengan genus lebih dari satu
Keluarga kurva dengan genus variabel
Kurva transendental
Kurva yang dihasilkan oleh kurva lain
Kurva ruang
Permukaan dalam ruang 3 dimensi
Kuadrik
Permukaan bola semu
See the list of algebraic surfaces .
Permukaan lainnya
Fraktal
Fraktal acak
Politop beraturan
Berikut adalah tabel yang memperlihatkan ringkasan mengenai politop beraturan yang dihitung dengan dimensi.
There are no nonconvex Euclidean regular tessellations in any number of dimensions.
Polytope elements
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.
Puncak , sebuah elemen dimensi 0
Sisi , sebuah elemen dimensi 1
Wajah , sebuah elemen dimensi 2
Sel , sebuah elemen dimensi 3
Hipersel , sebuah elemen dimensi 4
Facet , sebuah (n -1)
Ridge , sebuah elemen dimensi (n -2)
Peak , sebuah elemen dimensi (n -3)
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.
Vertex figure : not itself an element of a polytope, but a diagram showing how the elements meet.
Teselasi
The classical convex polytopes may be considered tessellations , or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Dimensi nol
Politop regular satu dimensi
Terdapat hanya satu politop dalam 1 dimensi, yang batasnya terdapat dua titik akhir ruas garis , diwakili oleh simbol Schläfli kosong {}.
Politop regular dua dimensi
Cembung
Merosot (bola)
Takcembung
Teselasi
Politop regular tiga dimensi
Cembung
Degenerate (spherical)
Takcembung
Tessellations
Euclidean tilings
Hyperbolic tilings
Hyperbolic star-tilings
Four-dimensional regular polytopes
Degenerate (spherical)
Non-convex
Tessellations of Euclidean 3-space
Degenerate tessellations of Euclidean 3-space
Tessellations of hyperbolic 3-space
Five-dimensional regular polytopes and higher
Tessellations of Euclidean 4-space
Tessellations of Euclidean 5-space and higher
Tessellations of hyperbolic 4-space
Tessellations of hyperbolic 5-space
Apeirotopes
Abstract polytopes
Non-regular polytopes
Bagian ini kosong. Anda bisa membantu dengan melengkapinya . (November 2014 )
2D with 1D surface
Polygons named for their number of sides
Tilings
Johnson solids
Spherical polyhedra
Honeycombs
Convex uniform honeycomb
Dual uniform honeycomb
Others
Convex uniform honeycombs in hyperbolic space
Other
Polyhedral compound and Uniform polyhedron compound
Convex regular 4-polytope
Abstract regular polytope
Schläfli–Hess 4-polytope (Regular star 4-polytope)
Uniform 4-polytope
Rectified 5-cell , Truncated 5-cell , Cantellated 5-cell , Runcinated 5-cell
Rectified tesseract , Truncated tesseract , Cantellated tesseract , Runcinated tesseract
Rectified 16-cell , Truncated 16-cell
Rectified 24-cell , Truncated 24-cell , Cantellated 24-cell , Runcinated 24-cell , Snub 24-cell
Rectified 120-cell , Truncated 120-cell , Cantellated 120-cell , Runcinated 120-cell
Rectified 600-cell , Truncated 600-cell , Cantellated 600-cell
Prismatic uniform polychoron
Grand antiprism
Duoprism
Tetrahedral prism , Truncated tetrahedral prism
Truncated cubic prism , Truncated octahedral prism , Cuboctahedral prism , Rhombicuboctahedral prism , Truncated cuboctahedral prism , Snub cubic prism
Truncated dodecahedral prism , Truncated icosahedral prism , Icosidodecahedral prism , Rhombicosidodecahedral prism , Truncated icosidodecahedral prism , Snub dodecahedral prism
Uniform antiprismatic prism
Honeycombs
5D with 4D surfaces
Five-dimensional space , 5-polytope and uniform 5-polytope
5-simplex , Rectified 5-simplex , Truncated 5-simplex , Cantellated 5-simplex , Runcinated 5-simplex , Stericated 5-simplex
5-demicube , Truncated 5-demicube , Cantellated 5-demicube , Runcinated 5-demicube
5-cube , Rectified 5-cube , 5-cube , Truncated 5-cube , Cantellated 5-cube , Runcinated 5-cube , Stericated 5-cube
5-orthoplex , Rectified 5-orthoplex , Truncated 5-orthoplex , Cantellated 5-orthoplex , Runcinated 5-orthoplex
Prismatic uniform 5-polytope
For each polytope of dimension n , there is a prism of dimension n +1.[butuh rujukan ]
Honeycombs
Six dimensions
Six-dimensional space , 6-polytope and uniform 6-polytope
6-simplex , Rectified 6-simplex , Truncated 6-simplex , Cantellated 6-simplex , Runcinated 6-simplex , Stericated 6-simplex , Pentellated 6-simplex
6-demicube , Truncated 6-demicube , Cantellated 6-demicube , Runcinated 6-demicube , Stericated 6-demicube
6-cube , Rectified 6-cube , 6-cube , Truncated 6-cube , Cantellated 6-cube , Runcinated 6-cube , Stericated 6-cube , Pentellated 6-cube
6-orthoplex , Rectified 6-orthoplex , Truncated 6-orthoplex , Cantellated 6-orthoplex , Runcinated 6-orthoplex , Stericated 6-orthoplex
122 polytope , 221 polytope
Honeycombs
Seven dimensions
Seven-dimensional space , uniform 7-polytope
7-simplex , Rectified 7-simplex , Truncated 7-simplex , Cantellated 7-simplex , Runcinated 7-simplex , Stericated 7-simplex , Pentellated 7-simplex , Hexicated 7-simplex
7-demicube , Truncated 7-demicube , Cantellated 7-demicube , Runcinated 7-demicube , Stericated 7-demicube , Pentellated 7-demicube
7-cube , Rectified 7-cube , 7-cube , Truncated 7-cube , Cantellated 7-cube , Runcinated 7-cube , Stericated 7-cube , Pentellated 7-cube , Hexicated 7-cube
7-orthoplex , Rectified 7-orthoplex , Truncated 7-orthoplex , Cantellated 7-orthoplex , Runcinated 7-orthoplex , Stericated 7-orthoplex , Pentellated 7-orthoplex
132 polytope , 231 polytope , 321 polytope
Honeycombs
Eight dimension
Eight-dimensional space , uniform 8-polytope
8-simplex , Rectified 8-simplex , Truncated 8-simplex , Cantellated 8-simplex , Runcinated 8-simplex , Stericated 8-simplex , Pentellated 8-simplex , Hexicated 8-simplex , Heptellated 8-simplex
8-orthoplex , Rectified 8-orthoplex , Truncated 8-orthoplex , Cantellated 8-orthoplex , Runcinated 8-orthoplex , Stericated 8-orthoplex , Pentellated 8-orthoplex , Hexicated 8-orthoplex [butuh rujukan ]
8-cube , Rectified 8-cube , Truncated 8-cube , Cantellated 8-cube , Runcinated 8-cube , Stericated 8-cube , Pentellated 8-cube , Hexicated 8-cube , Heptellated 8-cube [butuh rujukan ]
8-demicube , Truncated 8-demicube , Cantellated 8-demicube , Runcinated 8-demicube , Stericated 8-demicube , Pentellated 8-demicube , Hexicated 8-demicube [butuh rujukan ]
142 polytope , 241 polytope , 421 polytope , Truncated 421 polytope , Truncated 241 polytope , Truncated 142 polytope , Cantellated 421 polytope , Cantellated 241 polytope , Runcinated 421 polytope [butuh rujukan ]
Honeycombs
Nine dimensions
9-polytope
Hyperbolic honeycombs
Ten dimensions
10-polytope
Dimensional families
Regular polytope and List of regular polytopes
Uniform polytope
Honeycombs
Geometri
Geometry and other areas of mathematics
Ford circles
Glyphs and symbols
Referensi