Daftar bentuk matematika

Berikut ini adalah daftar dari beberapa bentuk matematis terdefinisi dengan baik .

Kurva rasional

Keluarga dengan derajat variabel

Kurva dari genus satu

Kurva dengan genus lebih dari satu

Keluarga kurva dengan genus variabel

Kurva transendental

Konstruksi sesepenggal

Kurva yang dihasilkan oleh kurva lain

Kurva ruang

Permukaan dalam ruang 3 dimensi

Kuadrik

Permukaan bola semu

See the list of algebraic surfaces.

Permukaan lainnya

Fraktal

Fraktal acak

Politop beraturan

Berikut adalah tabel yang memperlihatkan ringkasan mengenai politop beraturan yang dihitung dengan dimensi.

Dimensi Cembung Takcembung Teselasi cembung Euklides Teselasi cembung hiperbolik Teselasi takcembung hiperbolik Teselasi Hiperbolik dengan sel takhingga
dan/atau gambar verteks
Politop abstrak
1 1 ruas garis 0 1 0 0 0 1
2 polygons star polygons 1 1 0 0
3 5 Platonic solids 4 Kepler–Poinsot solids 3 tilings
4 6 convex polychora 10 Schläfli–Hess polychora 1 honeycomb 4 0 11
5 3 convex 5-polytopes 0 3 tetracombs 5 4 2
6 3 convex 6-polytopes 0 1 pentacombs 0 0 5
7+ 3 0 1 0 0 0

There are no nonconvex Euclidean regular tessellations in any number of dimensions.

Polytope elements

The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.

  • Puncak, sebuah elemen dimensi 0
  • Sisi, sebuah elemen dimensi 1
  • Wajah, sebuah elemen dimensi 2
  • Sel, sebuah elemen dimensi 3
  • Hipersel, sebuah elemen dimensi 4
  • Facet, sebuah (n-1)
  • Ridge, sebuah elemen dimensi (n-2)
  • Peak, sebuah elemen dimensi (n-3)

For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.

  • Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

Teselasi

The classical convex polytopes may be considered tessellations, or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

Dimensi nol

Politop regular satu dimensi

Terdapat hanya satu politop dalam 1 dimensi, yang batasnya terdapat dua titik akhir ruas garis, diwakili oleh simbol Schläfli kosong {}.

Politop regular dua dimensi

Cembung

Merosot (bola)

Takcembung

Teselasi

Politop regular tiga dimensi

Cembung

Degenerate (spherical)

Takcembung

Tessellations

Euclidean tilings
Hyperbolic tilings
Hyperbolic star-tilings

Four-dimensional regular polytopes

Degenerate (spherical)

Non-convex

Tessellations of Euclidean 3-space

Degenerate tessellations of Euclidean 3-space

Tessellations of hyperbolic 3-space

Five-dimensional regular polytopes and higher

Simplex Hypercube Cross-polytope
5-simplex 5-cube 5-orthoplex
6-simplex 6-cube 6-orthoplex
7-simplex 7-cube 7-orthoplex
8-simplex 8-cube 8-orthoplex
9-simplex 9-cube 9-orthoplex
10-simplex 10-cube 10-orthoplex
11-simplex 11-cube 11-orthoplex

Tessellations of Euclidean 4-space

Tessellations of Euclidean 5-space and higher

Tessellations of hyperbolic 4-space

Tessellations of hyperbolic 5-space

Apeirotopes

Abstract polytopes

Non-regular polytopes

2D with 1D surface

Polygons named for their number of sides

Tilings

Uniform polyhedra

Duals of uniform polyhedra

Johnson solids

Other nonuniform polyhedra

Spherical polyhedra

Honeycombs

Convex uniform honeycomb
Dual uniform honeycomb
Others
Convex uniform honeycombs in hyperbolic space

Other

Regular and uniform compound polyhedra

Polyhedral compound and Uniform polyhedron compound
Convex regular 4-polytope
Abstract regular polytope
Schläfli–Hess 4-polytope (Regular star 4-polytope)
Uniform 4-polytope
Prismatic uniform polychoron

Honeycombs

5D with 4D surfaces

Five-dimensional space, 5-polytope and uniform 5-polytope
Prismatic uniform 5-polytope
For each polytope of dimension n, there is a prism of dimension n+1.[butuh rujukan]

Honeycombs

Six dimensions

Six-dimensional space, 6-polytope and uniform 6-polytope

Honeycombs

Seven dimensions

Seven-dimensional space, uniform 7-polytope

Honeycombs

Eight dimension

Eight-dimensional space, uniform 8-polytope

Honeycombs

Nine dimensions

9-polytope

Hyperbolic honeycombs

Ten dimensions

10-polytope

Dimensional families

Regular polytope and List of regular polytopes
Uniform polytope
Honeycombs

Geometri

Geometry and other areas of mathematics

Ford circles

Glyphs and symbols

Referensi

  1. ^ "Courbe a Réaction Constante, Quintique De L'Hospital" [Kurva Reaksi Konstan, Quintic l'Hospital]. 
  2. ^ https://web.archive.org/web/20041114002246/http://www.mathcurve.com/courbes2d/isochron/isochrone%20leibniz. Diarsipkan dari versi asli tanggal 14 November 2004.  Tidak memiliki atau tanpa |title= (bantuan)
  3. ^ https://web.archive.org/web/20041113201905/http://www.mathcurve.com/courbes2d/isochron/isochrone%20varignon. Diarsipkan dari versi asli tanggal 13 November 2004.  Tidak memiliki atau tanpa |title= (bantuan)
  4. ^ Ferreol, Robert. "Spirale de Galilée". www.mathcurve.com. 
  5. ^ Weisstein, Eric W. "Seiffert's Spherical Spiral". mathworld.wolfram.com. 
  6. ^ Weisstein, Eric W. "Slinky". mathworld.wolfram.com. 
  7. ^ "Monkeys tree fractal curve". Diarsipkan dari versi asli tanggal 21 September 2002. 
  8. ^ WOLFRAM Demonstrations Project http://demonstrations.wolfram.com/SelfAvoidingRandomWalks/#more. Diakses tanggal 14 June 2019.  Tidak memiliki atau tanpa |title= (bantuan)
  9. ^ Weisstein, Eric W. "Hedgehog". mathworld.wolfram.com. 
  10. ^ "Courbe De Ribaucour" [Ribaucour curve]. mathworld.wolfram.com. 
Kembali kehalaman sebelumnya