Antarmuka otak-komputer
Antarmuka otak-komputer (bahasa Inggris: brain-computer interface (BCI)), kadang-kadang disebut antarmuka kendali-saraf (NCI), antarmuka mesin-pikiran (MMI), antarmuka saraf langsung (DNI), atau antarmuka mesin-otak (BMI), adalah jalur komunikasi langsung antara otak yang disempurnakan atau kabel dan perangkat eksternal. BCI berbeda dari neuromodulasi karena memungkinkan aliran informasi dua arah. BCI sering diarahkan untuk meneliti, memetakan, membantu, menambah, atau memperbaiki fungsi kognitif atau sensorik manusia.[1] Penelitian tentang BCI dimulai pada tahun 1970 di Universitas California, Los Angeles (UCLA) di bawah hibah dari National Science Foundation, diikuti oleh kontrak dari DARPA.[2] Makalah yang diterbitkan setelah penelitian ini juga menandai penampilan pertama dari antarmuka otak-komputer dalam literatur ilmiah.[3] Bidang penelitian dan pengembangan BCI sejak itu berfokus terutama pada aplikasi neuroprostesis yang bertujuan memulihkan kerusakan pendengaran, penglihatan dan pergerakan. Berkat plastisitas kortikal otak yang luar biasa, sinyal dari prostesis implan dapat ditangani oleh otak seperti sensor alami atau saluran efektor.[4] Setelah bertahun-tahun bereksperimen dengan hewan, perangkat neuroprostesis pertama yang ditanamkan pada manusia muncul pada pertengahan 1990-an.[5] SejarahMeskipun istilah itu belum diciptakan, salah satu contoh paling awal dari antarmuka mesin otak yang bekerja adalah karya Music for Solo Performer (1965) oleh komposer Amerika Alvin Lucier. Musik tersebut memanfaatkan EEG dan perangkat keras pemrosesan sinyal analog (filter, amplifier, dan papan pencampur) untuk merangsang instrumen perkusi akustik. Untuk melakukan bagian itu, seseorang harus menghasilkan gelombang alfa dan dengan demikian "memainkan" berbagai instrumen perkusi melalui pengeras suara yang ditempatkan dekat atau langsung pada instrumen itu sendiri.[6] Profesor UCLA Jacques Vidal menciptakan istilah "BCI" dan menghasilkan publikasi penelaahan sejawat pertama tentang topik ini.[2][3] Vidal secara luas diakui sebagai penemu BCI di komunitas BCI, sebagaimana tercermin dalam banyak artikel penelaahan sejawat yang mengulas dan membahas lapangan (misalnya,[7][8][9]). Makalah 1973-nya menyatakan "tantangan BCI": Mengendalikan objek menggunakan sinyal EEG. Terutama dia menunjukkan potensi Contingent Negative Variation (CNV) sebagai tantangan untuk kendali BCI. Eksperimen 1977 yang dijelaskan Vidal adalah aplikasi pertama BCI setelah tantangan 1973 BCI-nya. Itu adalah kontrol EEG (sebenarnya Visual Evoked Potentials (VEP)) noninvasif dari objek grafis seperti kursor pada layar komputer. Demonstrasinya adalah gerakan dalam labirin.[10] Pada tahun 1988, sebuah laporan dibuat mengenai kendali EEG noninvasif terhadap objek fisik, robot. Percobaan yang dijelaskan adalah kontrol EEG dari beberapa start-stop-restart dari gerakan robot, sepanjang lintasan arbitrer yang ditentukan oleh garis yang digambar di lantai. Perilaku mengikuti garis adalah perilaku robot default, memanfaatkan kecerdasan otonom dan sumber energi otonom.[11][12] BCI versus neuroprostesisNeuroprostesis adalah bidang ilmu saraf yang berkaitan dengan prostesis saraf, yaitu menggunakan perangkat buatan untuk menggantikan fungsi gangguan sistem saraf dan masalah yang berhubungan dengan otak, atau organ sensorik. Perangkat neuroprostesis yang paling banyak digunakan adalah implan koklea yang pada Desember 2010, telah dipasangkan pada sekitar 220.000 orang di seluruh dunia.[13] Ada juga beberapa perangkat neuroprostesis yang bertujuan mengembalikan penglihatan, termasuk implan retina.[14] Penelitian BCI manusiaBCI invasifBCI invasif memerlukan operasi untuk menanamkan elektrode di bawah kulit kepala untuk mengkomunikasikan sinyal otak. Keuntungan utama adalah menyediakan bacaan yang lebih akurat; Namun, kelemahannya termasuk efek samping dari operasi. Setelah operasi, jaringan parut dapat terbentuk yang dapat membuat sinyal otak lebih lemah. Selain itu, menurut penelitian Abdulkader et al., (2015), sekali ditanamkan elektrode, tubuh mungkin tidak menerima elektrode yang dapat menyebabkan komplikasi medis.[15] PengelihatanPenelitian BCI invasif bertujuan untuk memperbaiki penglihatan yang rusak dan menyediakan fungsionalitas baru untuk orang lumpuh. BCI invasif ditanamkan langsung ke materi kelabu otak selama bedah saraf. Karena mereka berada di materi abu-abu, perangkat invasif menghasilkan sinyal BCI berkualitas tinggi tetapi rentan terhadap pembentukan jaringan parut, menyebabkan sinyal menjadi lebih lemah, atau bahkan tidak ada karena tubuh bereaksi terhadap benda asing di otak.[16] Dalam ilmu penglihatan, implan otak langsung telah digunakan untuk mengobati kebutaan non-bawaan. Salah satu ilmuwan pertama yang menghasilkan antarmuka otak yang berfungsi untuk mengembalikan penglihatan adalah peneliti swasta William Dobelle. Purwarupa pertama Dobelle ditanamkan ke "Jerry", seorang lelaki yang menjadi buta saat dewasa, pada 1978. Jajaran BCI tunggal yang mengandung 68 elektrode yang ditanamkan pada korteks visual Jerry dan berhasil memproduksi fosfena, sensasi melihat cahaya. Sistem ini termasuk kamera yang dipasang pada kacamata untuk mengirim sinyal ke implan. Awalnya, implan memungkinkan Jerry untuk melihat nuansa abu-abu dalam bidang penglihatan terbatas dengan kecepatan bingkai yang rendah. Dia juga harus terhubung dengan komputer bingkai utama, tetapi menyusutnya elektronik dan komputer yang lebih cepat membuat mata buatannya lebih portabel dan sekarang memungkinkan dia untuk melakukan tugas-tugas sederhana tanpa bantuan.[17] BCI invasif sebagianPerangkat BCI invasif sebagian ditanamkan di dalam tengkorak tetapi berada di luar otak bukannya di dalam materi abu-abu. Alat ini menghasilkan resolusi sinyal yang lebih baik daripada BCI non-invasif karena jaringan tulang tengkorak membelokkan dan mengubah bentuk sinyal dan memiliki risiko lebih rendah untuk membentuk jaringan parut di otak daripada BCI yang sepenuhnya invasif. Telah ada demonstrasi praklinis BCI intrakortikal dari korteks stroke perilesi.[18] Elektrokortikografi (ECoG) mengukur aktivitas listrik otak yang diambil dari bawah tengkorak dengan cara yang mirip dengan elektroensefalografi non-invasif, tetapi elektrode tertanam dalam pad plastik tipis yang ditempatkan di atas korteks, di bawah dura mater.[19] Teknologi ECoG pertama kali diujicobakan pada manusia pada tahun 2004 oleh Eric Leuthardt dan Daniel Moran dari Washington University di St Louis. Dalam uji coba berikutnya, para peneliti memungkinkan seorang bocah remaja untuk bermain Space Invaders menggunakan implan ECoG-nya. Penelitian ini menunjukkan bahwa kontrol cepat, memerlukan pelatihan minimal, dan mungkin merupakan pertukaran risiko-manfaat yang ideal berkaitan dengan kejelasan sinyal dan tingkat invasifitas.[20] ECoG adalah modalitas BCI menengah yang sangat menjanjikan karena memiliki resolusi spasial yang lebih tinggi, rasio sinyal-ke-derau yang lebih baik, rentang frekuensi yang lebih luas, dan persyaratan pelatihan yang lebih rendah daripada EEG yang direkam melalui kulit kepala, dan pada saat yang sama memiliki kesulitan teknis yang lebih rendah, risiko klinis yang lebih rendah, dan mungkin stabilitas jangka panjang yang lebih baik daripada rekaman neuron tunggal intrakortikal. Profil fitur ini dan bukti terbaru dari tingkat kontrol yang tinggi dengan persyaratan pelatihan minimal menunjukkan potensi untuk aplikasi dunia nyata bagi orang-orang dengan keterbatasan motorik.[21][22] Referensi
|