Subruang vektorDalam aljabar linear, subruang vektor, atau disebut juga subruang linear, adalah sebuah ruang vektor yang merupakan subhimpunan dari ruang vektor yang lebih besar. Subruang vektor biasanya disebut subruang saja, apabila konteksnya cukup untuk membedakannya dari jenis subruang yang lain. DefinisiJika V merupakan sebuah ruang vektor atas lapangan K dan jika W merupakan subhimpunan dari V, maka W adalah sebuah subruang dari V jika di bawah operasi-operasi V, W merupakan ruang vektor atas K. Dengan kata-kata lain, sebuah subhimpunan tidak kosong W merupakan sebuah subruang dari V jika, untuk semua anggota W dan anggota K, adalah anggota W.[1][2][3][4][5] Akibatnya, semua ruang vektor memiliki paling tidak dua subruang: himpunan satu anggota beranggota vektor nol dan ruang vektor itu sendiri. Ini disebut subruang trivial dari ruang vektor.[6] Sifat-sifat subruangDari definisi subruang, bisa disimpulkan bahwa subruang tidak mungkin kosong, dan tertutup di bawah penjumlahan dan di bawah perkalian skalar.[7] Dengan kata lain, subruang memiliki sifat tertutup di bawah kombinasi linear. Artinya, sebuah himpunan tidak kosong W merupakan sebuah subruang jika dan hanya jika setiap kombinasi linear dari anggota-anggota W juga merupakan anggota dari W. Lihat pula
Referensi
Daftar pustaka
Pranala luar |