Soliton

Dalam matematika dan fisika, Soliton adalah gelombang soliter (sebuah paket gelombang atau pulsa) yang mempertahankan bentuknya sementara ia menjalar pada kecepatan konstan; soliton disebabkan oleh efek nonlinier dan efek dispersif dalam medium.[1] Soliton ditemukan dalam banyak fenomena fisika, sebagaimana mereka muncul sebagai solusi kelas yang lebar dari dispersif nonlinier lemah persamaan diferensial parsial yang mendeskripsikan sistem fisis.

Pendekatan Alam

Fisikawan harus mengadakan pendekatan guna memahami alam, di antaranya dengan pendekatan alami. Dengan pendekatan ini diharapkan, alam akan menampilkan dirinya cantik dan eksotik. Ini penting karena hasil pendekatan dipengaruhi secara signifikan oleh cara pendekatan. Pendekatan alami memiliki bea tinggi, karena semua interaksi yang berpengaruh terhadap sistem fisis yang ditinjau mesti diperhitungkan. Sebagai contoh, tinjauan gerak benda jatuh bebas dengan memperhitungkan gesekan dengan udara, maka ia adalah pendekatan alami.

Ini adalah contoh fenomena nonlinier. Fenomena nonlinear adalah fenomena yang bersifat umum dalam fisika, yakni semua fenomena alam semesta bersifat nonlinear. Dalam kategori ini, solusi persamaan nonlinier yang mendeskripsikan dinamika nonlinier muncul sebagai soliton.

Definisi Soliton

Soliton secara matematis adalah solusi persamaan diferensial nonlinier, memiliki energi total berhingga, terlokalisasi dalam ruang, bersifat stabil, tak menyebar. Profil sebaran rapat energinya menyerupai "gundukan" yang terpusat dalam rentang ruang berhingga. Setiap soliton dicirikan oleh sifat ketakubahan topologi yang menunjukkan sifat kestabilannya.

Fenomena soliton pertama kali dideskripsikan oleh John Scott Russell (808-1882) yang mengamati gelombang soliter dalam Kanal Edinburg-Glasgow, mereproduksi fenomena dalam tangki gelombang, dan menamainya "Gelombang Translasi" [2]

Ide soliton sering dikatakan bermula di bulan Agustus 1934 ketika John Scott Russel fisikawan Skotlandia, mengamati fenomena gelombang air di Kanal Edinburg-Glasgow. Russel memaparkan hasil pengamatannya dalam sebuah makalah yang diterbitkan dalam Report of the British Association for the Advancement of Science. Ia menyebut fenomena ini sebagai "gelombang besar translasi".

Gelombang air tersebut merambat lurus tanpa mengalami perubahan yang berarti pada bentuk maupun kecepatannya untuk jarak yang cukup panjang serta dalam rentang waktu relatif lama sepanjang kanal.

Dalam kata-kata alih bahasa bebas, Russel mengatakan:

Saya yakin akan lebih baik memperkenalkan fenomena ini dengan mendeskripsikan keadaan dari pengenalan pertama saya dengannya. Saya sedang mengamati gerak kapal sepanjang kanal sempit yang ditarik dengan cepat oleh sepasang kuda, ketika kapalnya tiba-tiba berhenti - tidak demikian halnya dengan massa air pada kanal yang telah digerakkannya; gelombang itu berakumulasi mengelilingi haluan kapal dalam keadaan golakan dahsyat, dan kemudian dengan tiba-tiba meninggalkan haluan kapal, menjalar ke depan dengan kecepatan besar, dalam bentuk gundukan air yang melanjutkan penjalarannya sepanjang kanal tanpa mengalami perubahan bentuk atau pengurangan kecepatan. Saya mengikuti gelombang itu di punggung kuda, dan setelah menyusuli, gelombang itu terus menjalar pada laju sekitar delapan atau sembilan mil per jam, dengan tetap mempertahankan bentuk awalnya, panjangnya sekitar tiga puluh kaki dan tingginya sekitar satu setengah kaki. Tingginya secara berangsur menurun, dan setelah pengejaran satu atau dua mil saya kehilangannya pada belokan kanal.

Russel juga melakukan beberapa percobaan laboratorium untuk mereproduksi gelombang soliton ini, dalam suatu tangki gelombang, dengan cara menjatuhkan sebuah benda pada salah satu ujung tangki. Ia mendeduksi secara empiris, volume air di gelombang sama dengan volume air yang dipindahkan. Sayang sekali, gejala atau fenomena gelombang soliton ini kemudian terlewat tanpa penjelasan selama kurun waktu hidup Russel.

Sains Soliton

Dalam kaitan dengan pekerjaan Stokes, Boussinesq, Rayleigh, Korteweg, de Vries, dan banyak yang lain, kita tahu bahwa "gelombang besar translasi" adalah bentuk khusus gelombang permukaan air.

Persamaan yang mendeskripsikan penjalaran gelombang satu arah pada permukaan dangkal kanal diberikan oleh Korteweg dan de Vries (KdV) pada tahun 1895 beserta perhitungan lengkap solusi persamaan hidrodinamika nonlinier.

Perkembangan yang berarti setelah pekerjaan Korteweg-de Vries muncul pada tahun 1965, ketika Zabusky dan Kruskal berhasil mengungkap terjadinya fenomena (yang kemudian dikenal dengan) soliton ini dari persamaan Korteweg-de Vries.

Fenomena soliton dalam sains muncul di banyak bidang. Mulai dari fisika partikel, nuklir, zat padat, plasma, fluida, biofisika (misal DNA), neurosains, kosmologi, akustik, kontrol hingga teknologi informasi:

Dalam tinjauan partikel, dapat dibayangkan, soliton adalah vorteks fluida. Vorteks adalah rotasi lokal atau aliran bergolak (turbulensi) memutar dengan garis-garis arus tertutup. Semua anggota keluarga partikel yang kita kenal, semisal elektron, proton, neutron, kuark, neutrino adalah soliton, yakni vorteks-vorteks fluida.

Pendekatan soliton untuk fisika nuklir menjadi begitu efektif untuk tingkat energi rendah hingga menengah. Penemuan pentakuark, nuklir yang tersusun dari lima kuark, dalam tahun-tahun terakhir (2003) merupakan suatu bukti eksperimental, yaitu soliton sebagai model efektif nuklir.

Kosmologi berkenaan dengan alam semesta skala besar dideskripsikan oleh persamaan medan nonlinier Einstein dalam teori relativitas umum. Solusi persamaan medan nonlinier dalam teori relativitas umum memunculkan adanya soliton yang berwujud black holes.

Berikut beberapa contoh persamaan nonlinier dan aplikasinya:

  • Persamaan Burger untuk aplikasi di bidang akustik nonlinear dan turbulensi.
  • Persamaan Kadomtshev-Petviashvilli dan persamaan Korteweg-de Vries untuk aplikasi di bidang gelombang laut dangkal, gelombang Rossby atmosfer, jaringan transmisi listrik.
  • Persamaan Schrodinger nonlinear untuk aplikasi di bidang komunikasi serat optik tanpa repeater.
  • Persamaan medan Affine-Toda dan persamaan sine-Gordon untuk aplikasi di bidang switching superkonduktor, pulsa optik ultra pendek.
  • Persamaan Ernst untuk aplikasi di bidang kosmologi, black holes dan monopol.

Teknologi Soliton

Dalam bidang teknologi, soliton dimanfaatkan antara lain dalam bidang teknologi informasi. Pelebaran sinyal sepanjang jalur transmisi memperoleh manfaat dari penggunaan pulsa tak menyebar.

Dalam tahun 1973, Akira Hasegawa dari Lab AT&T Bell menyarankan, soliton dapat berada dalam fiber optik. Akira juga mengajukan ide tentang sistem transmisi berbasis soliton untuk meningkatkan performa telekomunikasi optik.

Dalam tahun 1988, Linn Mollenauer beserta timnya berhasil mentransmisikan pulsa soliton sejauh lebih dari 4.000 kilometer dengan memanfaatkan fenomena yang disebut efek Raman untuk menyediakan bati optik dalam fiber. Dinamakan efek Raman, sebagai penghargaan bagi ilmuwan India yang pertama-tama mendeskripsikan efek tersebut pada tahun 1920-an.

Dalam tahun 1991, Tim Riset Lab Bell mentransmisikan soliton dengan kapasitas 2,5 gigabit sejauh lebih dari 14.000 kilometer, menggunakan penguat fiber optik erbium.

Dalam tahun 1998, Thierry Georges beserta timnya pada France Telecom R&D Center, mengkombinasikan soliton optik dengan panjang gelombang berbeda, menunjukkan transmisi data sebesar 1 terabit per detik (1.000.000.000.000 satuan informasi per detik).

Dalam tahun 2001, Algety Telecom berhasil mendistribusikan perangkat telekomunikasi submarine di Eropa dengan menggunakan gelombang soliton.

Stabilitas Soliton

Sebagai suatu istilah, kata "soliton" menyiratkan bahwa gelombang ini berperilaku seperti "partikel". Jika dua soliton ditempatkan terpisah dan masing-masing soliton menjalar saling mendekati satu sama lain dengan bentuk dan kecepatan konstan, maka pada saat kedua soliton tersebut semakin mendekat dan "bertumbukan", mereka secara berangsur-angsur berubah bentuk, lalu bergabung menjadi paket gelombang tunggal; kemudian segera berpisah kembali menjadi dua gelombang soliton dengan bentuk dan kecepatan yang sama dengan sebelum terjadinya tumbukan.

Stabilitas soliton berfungsi menyeimbangkan "efek nonlinier" dan "efek penyebaran". Efek nonlinier memandu gelombang soliton untuk terlokalisasi, sedangkan efek penyebaran menyebarkan gelombang soliton yang terlokalisasi tersebut. Jika salah satu dari kedua efek tersebut hilang, soliton menjadi tidak stabil dan akhirnya "menghilang".

Soliton Tiga Dimensi

Berikut adalah contoh soliton tiga dimensi:

  • Monopol

Monopol adalah soliton yang membawa muatan magnetik, muncul dalam teori gauge Yang-Mills-Higgs. Teori ini menggunakan dualitas listrik-magnet, dimana partikel elementer pembawa muatan listrik merangkap monopol muatan magnet.

  • Instanton

Instanton adalah solusi persamaan medan nonlinier yang muncul dalam teori medan Yang-Mills; sebuah bentuk umum nonlinier dari teori elektromagnetik Maxwell, yang diyakini memberi deskripsi interaksi fundamental dan partikel elementer.

Solusi instanton membawa informasi tentang quantum tunneling. Dalam teori medan kuantum, instanton adalah konfigurasi medan nontrivial topologi dalam ruang EuKlidean empat dimensi. Nama instanton diturunkan dari kenyataan, untuk waktu sesaat medan ini terlokalisasi dalam ruang-waktu Euklidean.

Pranala luar

Catatan kaki

  1. ^ Efek dispersif merujuk pada hubungan dispersi, hubungan antara frekuensi dan kecepatan gelombang dalam medium.
  2. ^ http://en.wikipedia.org/wiki/Soliton.
Kembali kehalaman sebelumnya