Pemelajaran dalam
Berdasarkan riset yang baru-baru ini dilakukan, pemelajaran dalam mampu melakukan pengenalan grafis, pola tulis tangan dan beberapa pola lainnya lebih akurat dibandingkan dengan algoritme pemelajaran mesin lainnya.[2] ArsitekturDeep Feedforward NetworkDeep Feedforward Network atau dikenal dengan Multilayer Perceptron (MLP) merupakan pengembangan dari jaringan saraf tiruan yang menekankan pada penggunakan satu atau lebih lapis tersembunyi (hidden layer) pada jaringannya dan penggunaan fungsi transformasi non-linear sebagai fungsi transformasi. Jaringan ini disebut Feedforward oleh karena sifatnya yang membawa informasi dari lapis masukan (input layer) untuk dibawa dan ditransformasi ke depan hingga lapis luaran (output layer). Recurrent Neural NetworkRecurrent Neural Network merupakan pengembangan dari Deep Feedforward Network yang mana informasi dari suatu neuron dapat berputar kembali ke neuron yang sama (Deep Feddforward Network hanya membawa informasi ke lapis A ke lapis B secara progresif tanpa kembali ke lapis sebelumnya). Convolutional Neural NetworkConvolutional Neural Network merupakan modifikasi dari Deep Feedforward Network yang mana setiap lapisnya dibuat dalam bentuk topologi grid mendalam. Referensi
|