Kofibrasi

Dalam matematika, khususnya teori homotopi, pemetaan kontinu

di mana dan adalah ruang topologi, kofibrasi adalah kelas homotopi peta diperluas ke kelas peta homotopi peta diperluas ke peta di mana , karena kelas homotopi yang terkait adalah .

Jenis struktur dikodekan dengan kondisi teknis yang memiliki sifat ekstensi homotopi dari ruang . Definisi ganda dengan fibrasi, yang diperlukan untuk mengunakan sifat pengangkatan homotopi dengan semua ruang. Dualitas ini secara informal disebut sebagai dualitas Eckmann-Hilton. Karena sifat umum dinyatakan, maka digunakan dalam kategori model.

Definisi

Teori homotopi

Peta ruang topologi disebut kofibrasi[1]hal 51 jika untuk peta sedemikian rupa sehingga ekstensi ke , maka peta adalah , dengan memperluas homotopi peta ke homotopi peta , dimana

Dengan mencari kondisi dalam diagram komutatif berikut

di mana adalah ruang jalur .

Objek kofibrant

Untuk kategori model , untuk ruang topologi runcing, sebuah objek disebut cofibrant jika peta adalah kofibrasi. Perhatikan bahwa dalam kategori ruang topologi runcing, pengertian kofibrasi bertepatan dengan definisi sebelumnya dengan asumsi peta adalah peta runcing dari ruang topologi.

Contoh

Dalam topologi

Kofibrasi adalah kelas peta yang canggung dari perspektif komputasi karena lebih mudah dilihat sebagai alat teknis formal yang memungkinkan seseorang untuk "melakukan" konstruksi teori homotopi dengan ruang topologi. Maka

dari ruang topologi, kofibrasi terkait ruang disebut peta tabung (di mana adalah retraksi deformasi, maka homotopi setara dengannya) yang memiliki kofibrasi terinduksi yang disebut mengganti peta dengan kofibrasi

dan peta dengan faktor melalui, artinya diagram komutatif

di mana adalah ekuivalen homotopi.

Selain kelas contoh, maka

  • Fakta yang sering digunakan adalah bahwa inklusi seluler adalah kofibrasi (jadi, misalnya, jika adalah kompleks CW adalah kofibrasi). Fakta sebelumnya maka adalah kofibrasi untuk setiap , dan pushout adalah peta perekatan ke .
  • Kofibrasi dipertahankan di bawah tekanan dan komposisi, yang dinyatakan persis di bawah ini.

Dalam kompleks rantai

Jika menjadi kategori kompleks rantai yang dalam derajat , kemudian ada struktur kategori model [2]hal 1.2 di mana ekuivalen lemahnya adalah Isomorfisme semu, jadi peta kompleks rantai yang isomorfisme setelah mengambil kohomologi, fibrasi yaitu epimorfisme, dan kofibrasi diberikan oleh peta

bersifat injektif dan kompleks kokernel adalah kompleks objek proyektif di . Selain itu, objek kofibrant adalah kompleks objeknya adalah objek proyektif .

Himpunan semi-sederhana

Untuk kategori dari himpunan semi-sederhana [2]hal 1.3 (tidak menggunakan peta degenerasi naik dalam derajat), terdapat struktur kategori model dengan fibrasi yang diberikan oleh fibrasi, peta injeksi kofibrasi, dan ekuivalen lemah diberikan realisasi geometris.

Sifat

  • Untuk ruang Hausdorff, setiap kofibrasi adalah inklusi tertutup (injektif dengan gambar tertutup); hasilnya juga menggeneralisasi ruang Hausdorff lemah.
  • Pushout dari suatu kofibrasi adalah kofibrasi. Artinya, jika adalah peta (kontinu) apa pun (antara ruang yang dibuat secara kompak), dan adalah kofibrasi, lalu peta yang diinduksi adalah kofibrasi.
  • Peta tabung dapat dipahami sebagai dorongan dari dan embedding (di salah satu ujung interval unit) . Artinya, silinder pemetaan dapat didefinisikan sebagai . Dengan sifat universal pushout, adalah kofibrasi tepat ketika peta pemetaan dapat dibangun untuk setiap ruang X.
  • Setiap peta dapat diganti dengan kofibrasi melalui konstruksi peta tabung. Artinya, diberikan peta yang berubah-ubah (berkelanjutan) (antara ruang yang dihasilkan secara kompak), seseorang mendefinisikan tabung pemetaan
.
Satu kemudian dikomposisi dalam komposit kofibrasi dan ekuivalen homotopi. ditulis sebagai peta
dengan , kapan adalah inklusi, dan di dan di .
  • Kofibrasi (A, X), jika dan hanya jika retraksi dari untuk , karena ini adalah pushout dan dengan demikian menginduksi peta ke setiap ruang yang masuk akal dalam diagram.
  • Persamaan yang serupa dapat dinyatakan untuk pasangan deformasi-retraksi, dan untuk pasangan deformasi-retraksi lingkungan.

Konstruksi dengan kofibrasi

Pengganti Kofibrant

Perhatikan bahwa dalam kategori model jika bukan kofibrasi, maka silinder pemetaan membentuk pengganti kofibrant . Faktanya, jika kita bekerja hanya dalam kategori ruang topologi, penggantian kofibran untuk peta apa pun dari titik ke ruang membentuk pengganti kofibran.

Kofiber

Untuk kofibrasi mendefinisikan kofiber ruang hasil bagi diinduksi . Secara umum, untuk , cofiber [1]hal 59 didefinisikan sebagai ruang hasil bagi

yang merupakan kerucut pemetaan . Secara homotopis, serat karbon bertindak sebagai coklat homotopi peta . Faktanya, untuk ruang topologi runcing, kolom homotopi dari

Faktanya, urutan peta dilengkapi dengan urutan kofiber dengan segitiga distiguisi dalam kategori triangulasi.

Lihat pula

Referensi

  1. ^ a b May, J. Peter. (1999). A concise course in algebraic topology. Chicago: University of Chicago Press. ISBN 0-226-51182-0. OCLC 41266205. 
  2. ^ a b Quillen, Daniel G. (1967). Homotopical algebra. Berlin: Springer-Verlag. ISBN 978-3-540-03914-3. OCLC 294862881. 
  • Peter May, "A Concise Course in Algebraic Topology" : bab 6 mendefinisikan dan mendiskusikan kofibrasi, dan digunakan di seluruh
  • Ronald Brown, "Topologi dan Groupoids" ; Bab 7 berjudul "Kofibrasi", dan memiliki banyak hasil yang tidak ditemukan di tempat lain.
Kembali kehalaman sebelumnya