Kesetaraan matriks

Dalam aljabar linear, dua matriks dan berukuran disebut setara atau ekuivalen jika berlaku hubunganuntuk suatu matriks terbalikkan dan yang masing-masing berukuran dan . Matriks-matriks yang saling setara merepresentasikan transformasi linear dibawah dua pilihan pasangan basis dan yang berbeda. Lebih lanjut, dan masing-masing menyatakan matriks perubahan basis di dan di .

Konsep kesetaraan tidak dapat disamakan dengan konsep keserupaan, yang hanya terdefinisi untuk matriks persegi dan didefinisikan jauh lebih ketat (matriks-matriks yang saling serupa pasti saling setara, namun kebalikannya belum tentu benar).[1] Keserupaan dapat dipadankan dengan matriks-matriks yang menyatakan endomorfisme yang sama, dibawah dua pilihan basis tunggal yang berbeda.

Sifat-sifat

Kesetaraan matriks adalah suatu relasi ekuivalensi pada ruang matriks.

Untuk dua matriks dengan ukuran yang sama, kesetaraan antara mereka juga dapat dikarakterisasi dengan beberapa kondisi berikut:

  • Matriks yang satu dapat diubah menjadi matriks yang lain, menggunakan serangkaian operasi baris dan kolom elementer.
  • Kedua matriks setara jika dan hanya jika keduanya memiliki rank yang sama.

Lihat pula

Referensi

  1. ^ Hefferon, Jim. Linear Algebra (dalam bahasa Inggris) (edisi ke-4th). hlm. 405. 
Kembali kehalaman sebelumnya