Genomika adalah cabang biologi yang mempelajari genom dari suatu organisme atau virus. Genomika dapat dikatakan sebagai cabang genetika apabila dilihat secara historik, meskipun dalam genomika digunakan banyak metode yang berasal dari cabang biologi lain, seperti bioinformatika dan biologi molekuler. Genomika tidak mungkin berdiri sebagai cabang ilmu tanpa bantuan bioinformatika karena objek kajiannya sangat besar (urutan basa nitrogen) dan memerlukan manajemen data yang rumit.
Termasuk yang dikaji adalah struktur, organisasi serta fungsinya. Objek kajiannya adalah DNA secara keseluruhan (DNA nuklear/inti, cpDNA, dan mtDNA) maupun sebagian ("gen"). RNA sebagai bahan genetik atau DNA yang dibuat berdasarkan RNA (cDNA) juga menjadi objek kajian genomika.
SEJARAH
Etimologi
Dari bahasa Yunani [1]gen, "gen" (gamma, epsilon, nu, epsilon) yang berarti "menjadi, membuat, menciptakan, melahirkan", dan varian-varian berikutnya: genealogi, genesis, genetika, genik, genomere, genotipe, genus dll. Sementara kata genom (dari GenomJerman, dikaitkan dengan Hans Winkler) digunakan dalam bahasa Inggris pada awal 1926,[2] istilah genomika diciptakan oleh Tom Roderick, seorang ahli genetika di Laboratorium Jackson (Bar Harbor, Maine), sambil minum bir di sebuah pertemuan yang diadakan di Maryland tentang pemetaan genom manusia pada tahun 1986.[3]
Selain pekerjaan pada urutan asam amino insulin, Frederick Sanger dan rekan-rekannya memainkan peran kunci dalam pengembangan teknik pengurutan DNA yang memungkinkan pembentukan proyek pengurutan genom yang komprehensif.[11] Pada tahun 1975, ia dan Alan Coulson menerbitkan prosedur pengurutan menggunakan DNA polimerase dengan nukleotida radiolabelled yang ia sebut teknik Plus dan Minus.[12][13] Ini melibatkan dua metode terkait erat yang menghasilkan oligonukleotida pendek dengan termini 3' yang telah ditentukan. Ini dapat difraksinasi dengan elektroforesis pada gel poliakrilamida (disebut elektroforesis gel poliakrilamida) dan divisualisasikan menggunakan autoradiografi. Prosedur ini dapat mengurutkan hingga 80 nukleotida dalam sekali jalan dan merupakan perbaikan besar, tetapi masih sangat melelahkan. Namun demikian, pada tahun 1977 kelompoknya mampu mengurutkan sebagian besar 5.386 nukleotida dari bakteriofag untai tunggal 17X174, menyelesaikan genom berbasis DNA yang sepenuhnya diurutkan.[14] Penyempurnaan metode Plus dan Minus menghasilkan penghentian rantai, atau metode Sanger, yang membentuk dasar teknik pengurutan DNA, pemetaan genom, penyimpanan data, dan analisis bioinformatika yang paling banyak digunakan pada penelitian 25 tahun setelahnya.[15][16] Pada tahun yang sama Walter Gilbert dan Allan Maxam dari Universitas Harvard secara independen mengembangkan metode Maxam-Gilbert (juga dikenal sebagai metode kimia) dari pengurutan DNA, yang melibatkan pembelahan preferensial DNA pada basis yang diketahui, metode yang kurang efisien.[17][18] Untuk pekerjaan inovatif mereka dalam pengurutan asam nukleat, Gilbert dan Sanger berbagi setengah dari Hadiah Nobel 1980 dalam bidang kimia dengan Paul Berg (DNA rekombinan).
Genom lengkap
Munculnya teknologi ini menghasilkan intensifikasi cepat dalam ruang lingkup dan kecepatan penyelesaian proyek pengurutan genom. Urutan genom lengkap pertama dari organel eukariotik, mitokondria manusia (16.568 bp, sekitar 16,6 kb [kilobasa]), dilaporkan pada tahun 1981,[19] dan genom kloroplas pertama diikuti pada tahun 1986.[20][21] Pada tahun 1992, kromosom eukariotik pertama, kromosom III ragi bir Saccharomyces cerevisiae (315 kb) diurutkan.[22] Organisme hidup bebas pertama yang diurutkan adalah Haemophilus influenzae (1,8 Mb [megabasa]) pada tahun 1995.[23] Tahun berikutnya konsorsium peneliti dari laboratorium di seluruh Amerika Utara, Eropa, dan Jepang mengumumkan penyelesaian urutan genom lengkap lengkap dari eukariota, S. cerevisiae (12,1 Mb), dan sejak itu genom terus diurutkan dengan pertumbuhan yang eksponensial.[24] Hingga Oktober 2011[update], urutan basa lengkap tersedia untuk: 2.719 virus, 1.115 archaea dan bakteri, dan 36 eukariota, di mana sekitar setengahnya merupakan jamur.[25][26]
Draf kasar genom manusia diselesaikan oleh Proyek Genom Manusia pada awal 2001, menciptakan banyak keriuhan.[32] Proyek ini, selesai pada tahun 2003, mengurutkan seluruh genom untuk satu orang tertentu, dan pada 2007 urutan ini dinyatakan "selesai" (kurang dari satu kesalahan dalam 20.000 basis dan semua kromosom terkumpul).[32] Pada tahun-tahun sejak saat itu, genom dari banyak individu lain telah diurutkan, sebagian di bawah naungan Proyek 1000 Genom, yang mengumumkan pengurutan 1.092 genom pada Oktober 2012.[33] Penyelesaian proyek ini dimungkinkan oleh pengembangan teknologi pengurutan yang jauh lebih efisien dan membutuhkan komitmen sumber daya bioinformatika yang signifikan dari kolaborasi internasional besar.[34] Analisis lanjutan data genom manusia memiliki dampak politik dan sosial yang mendalam bagi masyarakat manusia.[35]
Revolusi "omika"
"Omika" yaitu neologisme dari bahasa Inggris yang secara informal merujuk pada bidang studi biologi yang diakhiri dengan -omika, seperti genomika, proteomika, atau metabolomika. Akhiran terkait -om digunakan untuk mengatasi objek studi bidang tersebut, seperti masing-masing genom, proteom atau metabolom . Akhiran -om seperti yang digunakan dalam biologi molekuler mengacu pada totalitas terhadap sesuatu, sedangkan -omika merujuk secara umum pada studi kumpulan data biologis yang besar dan komprehensif. Sementara pertumbuhan dalam penggunaan istilah ini telah menyebabkan beberapa ilmuwan (Jonathan Eisen[36]) mengklaim bahwa istilah tersebut telah digunakan secara berlebih,[37] itu mencerminkan perubahan dalam orientasi menuju analisis kuantitatif lengkap atau hampir lengkap bermacam-macam semua konstituen dari suatu sistem.[38] Dalam studi simbiosis, misalnya, para peneliti yang dulunya terbatas pada studi produk gen tunggal sekarang dapat secara bersamaan membandingkan total komplemen dari beberapa jenis molekul biologis.[39][40]
Teknologi genomika generasi selanjutnya memungkinkan dokter dan peneliti biomedis untuk secara drastis meningkatkan jumlah data genom yang dikumpulkan pada populasi penelitian yang besar.[41] Ketika dikombinasikan dengan pendekatan informatika baru yang mengintegrasikan banyak jenis data dengan data genom dalam penelitian penyakit, ini memungkinkan para peneliti untuk lebih memahami dasar genetik dari respon obat dan penyakit.[42][43] Sebagai contoh, program penelitian All of Us bertujuan untuk mengumpulkan data urutan genom dari 1 juta peserta untuk menjadi komponen penting dari platform penelitian obat presisi.[44]
Konservasionis dapat menggunakan informasi yang dikumpulkan oleh pengurutan genom untuk mengevaluasi faktor genetik kunci untuk konservasi spesies, seperti keragaman genetik populasi atau apakah individu heterozigot untuk kelainan genetik bawaan yang resesif.[47] Dengan menggunakan data genom untuk mengevaluasi efek dari proses evolusi dan untuk mendeteksi pola dalam variasi di seluruh populasi tertentu, para pelestari lingkungan dapat merumuskan rencana untuk membantu spesies tertentu tanpa banyak variabel yang tidak diketahui seperti yang tidak dapat ditangani oleh pendekatan genetik standar.[48]
^Yue GH, Lo LC, Zhu ZY, Lin G, Feng F (April 2006). "The complete nucleotide sequence of the mitochondrial genome of Tetraodon nigroviridis". DNA Sequence. 17 (2): 115–21. doi:10.1080/10425170600700378. PMID17076253.
^Hudson KL (September 2011). "Genomics, health care, and society". The New England Journal of Medicine. 365 (11): 1033–41. doi:10.1056/NEJMra1010517. PMID21916641.
^O'Donnell CJ, Nabel EG (December 2011). "Genomics of cardiovascular disease". The New England Journal of Medicine. 365 (22): 2098–109. doi:10.1056/NEJMra1105239. PMID22129254.
^"NIH-funded genome centers to accelerate precision medicine discoveries". National Institutes of Health: All of Us Research Program. National Institutes of Health.Tidak memiliki atau membutuhkan |url= (bantuan)
^Church GM, Regis E (2012). Regenesis : how synthetic biology will reinvent nature and ourselves. New York: Basic Books. ISBN978-0-465-02175-8.