Siklus Rankine
Siklus ini menghasilkan 80% dari seluruh energi listrik yang dihasilkan di seluruh dunia. Siklus ini dinamai untuk mengenang ilmuwan Skotlandia, William John Maqcuorn Rankine. Siklus Rankine adalah model operasi mesin uap panas yang secara umum ditemukan di pembangkit listrik. Sumber panas yang utama untuk siklus Rankine adalah batu bara, gas alam, minyak bumi, nuklir, dan panas matahari. Siklus Rankine kadang-kadang diaplikasikan sebagai siklus Carnot, terutama dalam menghitung efisiensi. Perbedaannya hanyalah siklus ini menggunakan fluida yang bertekanan, bukan gas. Efisiensi siklus Rankine biasanya dibatasi oleh fluidanya. Tanpa tekanan yang mengarah pada keadaan super kritis, range temperatur akan cukup kecil. Uap memasuki turbin pada temperatur 565 oC (batas ketahanan stainless steel) dan kondenser bertemperatur sekitar 30 oC. Hal ini memberikan efisiensi Carnot secara teoretis sebesar 63%, tetapi kenyataannya efisiensi pada pembangkit listrik tenaga batu bara sebesar 42%. Fluida pada Siklus Rankine mengikuti aliran tertutup dan digunakan secara konstan. Berbagai jenis fluida dapat digunakan pada siklus ini, tetapi air dipilih karena berbagai karakteristik fisika dan kimia, seperti tidak beracun, terdapat dalam jumlah besar, dan murah. Proses siklus RankineTerdapat 4 proses dalam siklus Rankine, setiap siklus mengubah keadaan fluida (tekanan dan/atau wujud).
Dalam siklus Rankine ideal, pompa dan turbin adalah isentropic, yang berarti pompa dan turbin tidak menghasilkan entropi dan memaksimalkan output kerja. Dalam siklus Rankine yang sebenarnya, kompresi oleh pompa dan ekspansi dalam turbin tidak isentropic. Dengan kata lain, proses ini tidak bolak-balik dan entropi meningkat selama proses. Hal ini meningkatkan tenaga yang dibutuhkan oleh pompa dan mengurangi energi yang dihasilkan oleh turbin. Secara khusus, efisiensi turbin akan dibatasi oleh terbentuknya titik-titik air selama ekspansi ke turbin akibat kondensasi. Titik-titik air ini menyerang turbin, menyebabkan erosi dan korosi, mengurangi usia turbin dan efisiensi turbin. Cara termudah dalam menangani hal ini adalah dengan memanaskannya pada temperatur yang sangat tinggi. Efisiensi termodinamika bisa didapatkan dengan meningkatkan temperatur input dari siklus. Terdapat beberapa cara dalam meningkatkan efisiensi siklus Rankine.
Siklus Rankine OrganikSiklus Rankine Organik menggunakan fluida senyawa organik seperti n-pentana atau toluena menggantikan air. Penggunaan kedua jenis fluida tersebut akan mengurangi suplai panas yang dibutuhkan karena rendahnya titik didih dari fluida tersebut dan memiliki volatilitas tinggi sehingga sudah cukup untuk mengubah fase fluida tersebut menjadi gas yang dimanfaatkan untuk memutar turbin. Meski efisiensi Carnot akan berkurang, tetapi pengumpulan panas yang dilakukan pada temperatur rendah akan mengurangi banyak biaya operasional. Sistem ideal adalah sistem dimana ekspansi volume merupakan proses isentropik (adiabatik dan bisa dikembalikan reversible). Sedangkan selama evaporasi maupun kondensasi merupakan proses isobarik. Akan tetapi sistem pada dunia nyata pasti memiliki beberapa yang tidak bisah diubah kembali irreversible yang menurunkan efesiensi, seperti:
Siklus Rankine sesungguhnya tidak membatasi fluida jenis apa yang digunakan karena pada dasarnya siklus Rankine adalah mesin kalor sehingga efisiensinya dihitung berdasarkan efisiensi Carnot. Konsepnya tidak boleh dipisahkan dengan siklus termodinamika. Referensi
Pranala luar |