Prosedur Brams–Taylor
SejarahPada tahun 1988, sebelum ditemukannya prosedur BTP, Sol Garfunkel berpendapat bahwa masalah yang diselesaikan dengan teorema, yaitu pemotongan kue bebas iri n-person, adalah salah satu masalah terpenting dalam dunia matematika abad ke-20.[2] Prosedur BTP kemudian ditemukan oleh Steven Brams dan Alan D. Taylor. Prosedur ini pertama kali diterbitkan dalam edisi bulan Januari 1995 American Mathematical Monthly,[3] dan pada tahun 1996 ditulis menjadi buku. Brams dan Taylor menjadi pemegang hak paten AS dari tahun 1999 terkait dengan prosedur BTP.[4] DeskripsiProsedur BTP membagi kue menjadi bagian demi bagian. Perantara khusus dari prosedur BTP ini adalah sebagai berikut:
Sebagai contoh bagaimana IA dapat dihasilkan, dengan mempertimbangkan tahapan pertama prosedur diskrit Selfridge–Conway (Selfridge–Conway discrete procedure), yakni:
Setelah tahapan memilih ini selesai, semua kue kecuali dibagi dengan cara tanpa-rasa iri. Selain itu, Alice sekarang memiliki IA atas siapa pun yang mengambil . Mengapa? karena Alice mengambil keduanya atau , dan keduanya sama dengan menurut pendapatnya. Jadi, menurut pendapat Alice, siapa pun yang mengambil bisa juga memiliki – hal ini tidak akan membuatnya iri. Untuk memastikan apakah Alice mendapatkan IA dari pemain atau mitra tertentu (misalnya Bob), maka diperlukan prosedur yang jauh lebih rumit. Ini secara berurutan membagi kue menjadi potongan-potongan yang lebih kecil dan lebih kecil lagi, selalu memberi Alice sepotong yang dia hargai lebih dari milik Bob, sehingga IA dipertahankan. Ini mungkin membutuhkan waktu yang tidak terbatas – tergantung pada penilaian yang tepat menurut Alice dan juga Bob. Lihat juga
Referensi
|